test_elementwise_mul_op.py 3.6 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15
import unittest
import numpy as np
16
from op_test import OpTest
17 18


G
gongweibao 已提交
19
class ElementwiseMulOp(OpTest):
20 21 22
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
23 24
            'X': np.random.uniform(0.1, 1, [13, 17]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float64")
25 26 27 28 29 30 31
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
32
        self.check_grad(['X', 'Y'], 'Out')
33 34

    def test_check_grad_ingore_x(self):
35
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))
36 37

    def test_check_grad_ingore_y(self):
38
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
39 40


41 42 43 44 45 46 47 48 49 50
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 4).astype(np.float32),
            'Y': np.random.rand(1).astype(np.float32)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}


G
gongweibao 已提交
51
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
52 53 54
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
55 56
            'X': np.random.random((32, )).astype("float64"),
            'Y': np.random.random((32, )).astype("float64")
57 58 59 60
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}


G
gongweibao 已提交
61
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
62 63 64
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
65 66
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(2).astype(np.float64)
67 68 69 70 71 72 73 74
        }

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1)
        }


G
gongweibao 已提交
75
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
76 77 78
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
79 80
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(3).astype(np.float64)
81 82 83 84 85 86 87 88
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1)
        }


G
gongweibao 已提交
89
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
90 91 92
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
93 94
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(4).astype(np.float64)
95 96 97 98 99 100 101
        }

        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4)
        }


G
gongweibao 已提交
102
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
103 104 105
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
106 107
            'X': np.random.rand(2, 3, 4, 5).astype(np.float64),
            'Y': np.random.rand(3, 4).astype(np.float64)
108 109 110 111 112 113 114 115 116 117
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1)
        }


if __name__ == '__main__':
    unittest.main()