pybind.cc 63.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/framework/garbage_collector.h"
28
#include "paddle/fluid/framework/ir/alloc_continuous_space_for_grad_pass.h"
29
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
30 31 32
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
33
#include "paddle/fluid/framework/op_info.h"
34
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
35
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
37
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
39
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
40
#include "paddle/fluid/framework/version.h"
41
#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
42
#include "paddle/fluid/imperative/profiler.h"
Y
Refine  
Yu Yang 已提交
43
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
44
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
D
dzhwinter 已提交
45
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
48
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
49
#include "paddle/fluid/platform/enforce.h"
50
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
51 52
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
53
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
54
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
55
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
57
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
58
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
59
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
60
#include "paddle/fluid/pybind/ir.h"
W
wopeizl 已提交
61
#ifndef _WIN32
D
dongdaxiang 已提交
62
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
63
#endif
64 65
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
66
#include "paddle/fluid/pybind/reader_py.h"
Y
Yu Yang 已提交
67
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
68
#include "paddle/fluid/pybind/tensor_py.h"
69
#include "paddle/fluid/string/to_string.h"
70

D
Dong Zhihong 已提交
71
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
72
#ifndef _WIN32
Y
Yi Wang 已提交
73
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
74
#endif
Y
Yi Wang 已提交
75 76
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
77 78
#endif

M
minqiyang 已提交
79 80
#include "pybind11/stl.h"

81 82 83 84
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
85 86 87
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

88
namespace paddle {
89
namespace pybind {
90
bool IsCompiledWithCUDA() {
91
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
92 93 94 95 96 97
  return false;
#else
  return true;
#endif
}

98 99 100 101 102 103 104 105
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

106 107 108 109 110 111 112 113
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

114
bool IsCompiledWithBrpc() {
115
#ifndef PADDLE_WITH_DISTRIBUTE
116 117
  return false;
#endif
118 119 120 121 122 123

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
124 125
}

Y
update  
Yancey1989 已提交
126
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
127
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
128 129 130 131 132 133
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
134 135 136 137 138 139 140 141 142 143
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

144
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
145 146 147
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
148
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
149

150
  m.doc() = "C++ core of PaddlePaddle";
151

152 153 154 155
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

156
  BindException(&m);
Y
Yu Yang 已提交
157

S
sneaxiy 已提交
158
  m.def(
S
sneaxiy 已提交
159
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
160 161 162 163
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
164 165 166
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
167 168 169
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
170
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
171

172
  m.def("_set_fuse_parameter_group_size",
173
        &paddle::framework::ir::SetFuseParameterGroupsSize);
174
  m.def("_set_fuse_parameter_memory_size",
175
        &paddle::framework::ir::SetFuseParameterMemorySize);
176

S
sneaxiy 已提交
177 178 179
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

180 181 182 183 184 185 186
  m.def("get_mem_usage", [](int device) {
    return memory::allocation::GPUMemMonitor.GetMemUsage(device);
  });

  m.def("print_mem_usage",
        []() { return memory::allocation::GPUMemMonitor.PrintMemUsage(); });

187 188 189 190 191 192 193 194 195 196 197 198
  py::class_<imperative::detail::BackwardStrategy> backward_strategy(
      m, "BackwardStrategy", R"DOC()DOC");
  backward_strategy.def(py::init())
      .def_property("sort_sum_gradient",
                    [](const imperative::detail::BackwardStrategy &self) {
                      return self.sorted_sum_gradient_;
                    },
                    [](imperative::detail::BackwardStrategy &self,
                       bool sorted_sum_gradient) {
                      self.sorted_sum_gradient_ = sorted_sum_gradient;
                    });

M
minqiyang 已提交
199
  m.def("start_imperative_gperf_profiler",
M
minqiyang 已提交
200 201
        []() { imperative::StartProfile(); });

M
minqiyang 已提交
202
  m.def("stop_imperative_gperf_profiler", []() { imperative::StopProfile(); });
M
minqiyang 已提交
203

M
minqiyang 已提交
204
  py::class_<imperative::VarBase>(m, "VarBase", R"DOC()DOC")
205 206 207 208 209 210 211 212
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>, const paddle::platform::CPUPlace,
                   bool, bool>())
      .def(
          py::init<const std::string &, paddle::framework::proto::VarType::Type,
                   const std::vector<int64_t>,
                   const paddle::platform::CUDAPlace, bool, bool>())
213
      .def("_run_backward",
214 215 216 217
           [](imperative::VarBase &self,
              const imperative::detail::BackwardStrategy &bckst) {
             self.RunBackward(bckst);
           })
M
minqiyang 已提交
218
      .def("_grad_name", &imperative::VarBase::GradName)
M
minqiyang 已提交
219
      .def("_grad_value", &imperative::VarBase::GradValue)
X
Xin Pan 已提交
220
      .def("_clear_gradient", &imperative::VarBase::ClearGradient)
M
minqiyang 已提交
221
      .def("_grad_ivar",
M
minqiyang 已提交
222
           [](const imperative::VarBase &self) { return self.grads_; },
M
minqiyang 已提交
223
           py::return_value_policy::reference)
M
minqiyang 已提交
224
      .def("_copy_to",
P
Paddle CI 已提交
225
           [](const imperative::VarBase &self, const platform::CPUPlace &place,
M
minqiyang 已提交
226 227 228 229 230
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
P
Paddle CI 已提交
231
           py::return_value_policy::take_ownership)
M
minqiyang 已提交
232
      .def("_copy_to",
P
Paddle CI 已提交
233
           [](const imperative::VarBase &self, const platform::CUDAPlace &place,
M
minqiyang 已提交
234 235 236 237 238
              bool blocking) {
             std::unique_ptr<imperative::VarBase> new_var =
                 self.NewVarBase(place, blocking);
             return new_var.release();
           },
M
minqiyang 已提交
239
           py::return_value_policy::take_ownership)
240 241
      .def("value",
           [](const imperative::VarBase &self) { return self.var_.get(); },
M
minqiyang 已提交
242
           py::return_value_policy::reference)
243 244 245
      .def_property("name", &imperative::VarBase::Name,
                    &imperative::VarBase::SetName)
      .def_property_readonly("shape", &imperative::VarBase::Shape)
M
minqiyang 已提交
246
      .def_property_readonly("dtype", &imperative::VarBase::DataType)
247 248 249 250
      .def_property("persistable", &imperative::VarBase::IsPersistable,
                    &imperative::VarBase::SetPersistable)
      .def_property("stop_gradient", &imperative::VarBase::IsStopGradient,
                    &imperative::VarBase::SetStopGradient);
251

252
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
253
      .def(py::init<const std::string &>())
254
      .def("register_backward_hooks",
255 256 257 258 259
           [](imperative::OpBase &self, const py::object &callable,
              bool front = false) {
             self.RegisterBackwardHooks(callable, front);
           },
           py::arg("callable"), py::arg("front") = false)
M
minqiyang 已提交
260 261 262 263 264 265 266 267 268 269
      .def_property("_trace_id",
                    [](const imperative::OpBase &self) {
                      pybind11::gil_scoped_release release;
                      return self.trace_id_;
                    },
                    [](imperative::OpBase &self, int trace_id) {
                      pybind11::gil_scoped_release release;
                      self.trace_id_ = trace_id;
                    },
                    py::return_value_policy::reference)
X
Xin Pan 已提交
270 271 272 273 274 275
      .def_property(
          "forward_id",
          [](const imperative::OpBase &self) { return self.forward_id_; },
          [](imperative::OpBase &self, int forward_id) {
            self.forward_id_ = forward_id;
          },
X
Xin Pan 已提交
276
          py::return_value_policy::reference)
X
polish  
Xin Pan 已提交
277
      .def_property_readonly("type", &imperative::OpBase::Type)
X
Xin Pan 已提交
278 279 280 281 282 283
      .def_property(
          "backward_id",
          [](const imperative::OpBase &self) { return self.backward_id_; },
          [](imperative::OpBase &self, int backward_id) {
            self.backward_id_ = backward_id;
          },
284 285
          py::return_value_policy::reference);

X
Xin Pan 已提交
286
  py::class_<imperative::Layer, Layer /* <--- trampoline*/> layer(m, "Layer");
287
  layer.def(py::init<>())
X
Xin Pan 已提交
288
      .def("forward", [](imperative::Layer &self,
289
                         const std::vector<imperative::VarBase *> &inputs) {
X
Xin Pan 已提交
290
        return self.Forward(inputs);
X
Xin Pan 已提交
291
      });
X
Xin Pan 已提交
292

X
polish  
Xin Pan 已提交
293
  py::class_<imperative::PyLayer>(m, "PyLayer")
X
Xin Pan 已提交
294
      .def(py::init<>())
X
Xin Pan 已提交
295 296
      .def_static(
          "apply",
X
Xin Pan 已提交
297
          [](int func_id, const std::vector<imperative::VarBase *> &inputs)
X
Xin Pan 已提交
298
              -> std::vector<imperative::VarBase *> {
299 300 301 302 303
                auto ret_vars = imperative::PyLayer::Apply(func_id, inputs);
                std::vector<imperative::VarBase *> outputs;
                outputs.reserve(ret_vars.size());
                for (size_t i = 0U; i != ret_vars.size(); ++i) {
                  // TODO(minqiyang): use unique_name generator to set a name
304 305
                  outputs.emplace_back(new imperative::VarBase(
                      "", std::move(ret_vars[i]), nullptr, true));
306 307 308
                }

                return outputs;
X
Xin Pan 已提交
309 310
              },
          py::return_value_policy::take_ownership)
X
polish  
Xin Pan 已提交
311 312 313 314 315
      .def_static("register_func",
                  [](int func_id, const py::object &callable) {
                    imperative::PyLayer::RegisterFunc(func_id, callable);
                  })
      .def_static("num_funcs", &imperative::PyLayer::NumFuncs);
X
Xin Pan 已提交
316

317
  BindImperative(&m);
318

319
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
320
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
321 322
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
323
      .def("_get_dims",
324
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
325
      .def("_set_dims",
Q
qijun 已提交
326
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
327
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
328
           })
Y
yuyang18 已提交
329
      .def("_set_layout",
D
dzhwinter 已提交
330 331 332
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
333
      .def("_alloc_float",
D
dzhwinter 已提交
334
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
335
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
336
           })
Y
yuyang18 已提交
337
      .def("_alloc_float",
Y
Yu Yang 已提交
338
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
339
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
340
           })
Y
yuyang18 已提交
341
      .def("_alloc_int",
Y
Yu Yang 已提交
342
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
343
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
344
           })
Y
yuyang18 已提交
345
      .def("_alloc_int",
D
dzhwinter 已提交
346
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
347
             self.mutable_data<int>(place);
Q
qijun 已提交
348
           })
Y
yuyang18 已提交
349
      .def("_alloc_int",
C
chengduoZH 已提交
350 351 352
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
353
      .def("_alloc_float",
C
chengduoZH 已提交
354 355 356
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
357 358
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
359
      .def("set", PyCPUTensorSetFromArray<double>)
360
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
361
      .def("set", PyCPUTensorSetFromArray<bool>)
362
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
363
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
364
      .def("set", PyCPUTensorSetFromArray<int8_t>)
365
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
366 367
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
368
      .def("set", PyCUDATensorSetFromArray<double>)
369
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
370
      .def("set", PyCUDATensorSetFromArray<bool>)
371
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
372
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
373
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
374 375 376 377 378 379
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
380
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
381
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
382
#endif
383
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
384 385 386 387
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
388
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
389 390
      .def("_dtype", [](Tensor &self) { return self.type(); })
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference);
Y
Yu Yang 已提交
391

X
Xin Pan 已提交
392 393 394 395 396 397 398 399 400
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

Z
Zeng Jinle 已提交
401 402 403
    For example, a LoDTensor X can look like the example below. It contains 
    2 sequences. The first has length 2 and the second has length 3, as 
    described by x.lod.
X
Xin Pan 已提交
404

Z
Zeng Jinle 已提交
405 406 407
    The first tensor dimension 5=2+3 is calculated from LoD if it's available.
    It means the total number of sequence element. In X, each element has 2
    columns, hence [5, 2].
X
Xin Pan 已提交
408

Z
Zeng Jinle 已提交
409 410 411
    x.lod  = [[2, 3]]
     
    x.data = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X
Xin Pan 已提交
412

Z
Zeng Jinle 已提交
413
    x.shape = [5, 2]
X
Xin Pan 已提交
414

Z
Zeng Jinle 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    LoD can have multiple levels (for example, a paragraph can have multiple
    sentences and a sentence can have multiple words). In the following
    LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
    first sequence length is 2 (has 2 sub-sequences), the second one's
    length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
    respectively. And the second sequence's 1 sub-sequence has length 3.

    y.lod = [[2 1], [2 2 3]]

    y.shape = [2+2+3, ...]

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
432 433 434 435 436 437 438 439 440 441 442 443

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.
        )DOC")
444
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
445 446 447 448 449 450 451 452 453 454 455 456 457 458
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
459
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
460 461 462 463 464
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
465
      .def("set_lod",
466
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
467
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
468
             LoD new_lod;
469 470
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
471 472
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
473
             self.set_lod(new_lod);
S
sneaxiy 已提交
474 475 476 477 478 479
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
               lod (List[List[int]]): the lod to be set.
Z
Zeng Jinle 已提交
480 481 482 483 484 485 486 487 488 489

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
S
sneaxiy 已提交
490
           )DOC")
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
506 507 508 509
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
           Set LoD of the LoDTensor according to recursive sequence length.

S
sneaxiy 已提交
510
           For example, if recursive_sequence_lengths=[[2, 3]], meaning that
511 512
           there are two sequences with length 2 and 3 respectively, the
           corresponding lod would be [[0, 2, 2+3]], i.e, [[0, 2, 5]].
S
sneaxiy 已提交
513 514

           Args:
515
                recursive_sequence_lengths (List[List[int]]): sequence lengths.
Z
Zeng Jinle 已提交
516 517 518 519 520 521 522 523 524 525

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
S
sneaxiy 已提交
526
           )DOC")
527 528 529 530 531 532 533 534
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
535 536 537 538 539 540
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
               out (List[List[int]]): the lod of the LoDTensor.
Z
Zeng Jinle 已提交
541 542 543 544 545 546 547 548 549 550 551

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
552
           )DOC")
G
gongweibao 已提交
553
      // Set above comments of set_lod.
554 555 556 557 558 559 560 561
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
562 563 564 565 566
           },
           R"DOC(
           Return the sequence length of the LoDTensor corresponding to LoD.

           Returns:
567
               out (List[List[int]): the sequence lengths.
Z
Zeng Jinle 已提交
568 569 570 571 572 573 574 575 576 577 578

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
579 580 581 582 583 584 585 586 587 588 589 590
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
           Check whether the lod of the LoDTensor is valid.

           Returns:
               out (bool): whether the lod is valid.
Z
Zeng Jinle 已提交
591 592 593 594 595 596 597 598 599 600 601

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
602 603 604 605 606 607 608
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
S
sneaxiy 已提交
609
           )DOC");
D
dangqingqing 已提交
610

Q
qijun 已提交
611 612 613 614 615 616 617 618 619 620 621
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
622 623
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
624 625
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
626 627 628 629 630 631 632 633 634
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
635
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
636
      .def("rows", [](SelectedRows &self) {
637 638 639 640 641
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
642
      });
Q
qijun 已提交
643

644
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
645 646 647

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
648
      .def(py::init<>())
649
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
650
      .def("set_int",
651 652
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
653 654 655 656 657 658 659
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
660
      .def("get_tensor",
661 662
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
663 664
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
665 666 667
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
668 669 670 671 672
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
673 674 675
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
676
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
677 678 679 680 681
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
682
#endif
Y
Refine  
Yu Yang 已提交
683 684 685 686 687
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
688
           py::return_value_policy::reference);
689

S
sneaxiy 已提交
690
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
691

S
sneaxiy 已提交
692 693 694 695
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
696

S
sneaxiy 已提交
697 698
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
699
      .def("push",
S
sneaxiy 已提交
700
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
701
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
702
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
703
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
704
           })
S
sneaxiy 已提交
705 706 707 708
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
709

S
sneaxiy 已提交
710
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
711 712
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
713
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
714 715 716 717
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
718
        py::return_value_policy::copy);
S
sneaxiy 已提交
719

S
sneaxiy 已提交
720
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
740 741
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
742
      .def("var",
743
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
744
             return self.Var(name);
Y
Yu Yang 已提交
745
           },
S
sneaxiy 已提交
746 747
           py::arg("name"),
           R"DOC(
748
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
749

750
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
751
           current scope, the variable would be created. Otherwise,
752
           return the existing variable.
S
sneaxiy 已提交
753 754

           Args:
755 756
               name (str): the variable name.

S
sneaxiy 已提交
757
           Returns:
758
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
759 760 761 762
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
763
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
764
           its parent scope. Return None if not found.
765

S
sneaxiy 已提交
766 767
           Args:
               name (str): the variable name.
768

S
sneaxiy 已提交
769
           Returns:
770
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
771
           )DOC",
772
           py::return_value_policy::reference)
773
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
774 775 776 777 778 779
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
780
           py::return_value_policy::reference)
S
sneaxiy 已提交
781 782 783
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
784 785
           )DOC")
      .def("_kids", &Scope::kids);
786

S
sneaxiy 已提交
787 788 789 790 791 792
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
793 794
        R"DOC(
        Create a new scope.
795

S
sneaxiy 已提交
796 797 798
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
799 800
        py::return_value_policy::reference);

Y
Yu Yang 已提交
801 802
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
803 804
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
805 806 807 808 809 810 811 812 813 814
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
815 816
    return ret_values;
  });
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
833
  m.def("prune", [](const ProgramDesc &origin,
834
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
835
    ProgramDesc prog_with_targets(origin);
836
    for (const auto &t : targets) {
837
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
838
    }
839
    proto::ProgramDesc pruned_desc;
840
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
841
    return new ProgramDesc(pruned_desc);
842
  });
843 844 845 846
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
847 848 849
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
850 851
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
852
  // clang-format off
Y
Yu Yang 已提交
853
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
854 855
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
856
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
857 858 859
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
860
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
861
                      -> paddle::platform::DeviceContext* {
862
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
863
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
864
#else
Q
qijun 已提交
865
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
866
#endif
C
chengduoZH 已提交
867 868 869 870 871 872 873 874 875 876 877
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
878
// clang-format on
P
peizhilin 已提交
879
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
880 881
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
882 883 884 885
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
    CUDAPlace is a descriptor of a device. It represents a GPU, and each CUDAPlace
    has a dev_id to indicate the number of cards represented by the current CUDAPlace.
    The memory of CUDAPlace with different dev_id is not accessible.
L
lujun 已提交
886 887 888 889 890 891

    Examples:
        .. code-block:: python

          gpu_place = fluid.CUDAPlace(0)

892
        )DOC")
S
sneaxiy 已提交
893 894 895 896 897 898 899 900 901 902 903 904
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
             PADDLE_ENFORCE(
                 dev_id >= 0 && dev_id < platform::GetCUDADeviceCount(),
                 "Invalid CUDAPlace(%d), must inside [0, %d)", dev_id,
                 platform::GetCUDADeviceCount());
             new (&self) platform::CUDAPlace(dev_id);
#else
             PADDLE_THROW("Cannot use CUDAPlace in CPU only version");
#endif
           })
S
sneaxiy 已提交
905 906 907 908 909 910
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
911
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
912

913 914 915
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
    CPUPlace is a descriptor of a device. It represents a CPU, and the memory
    CPUPlace can be accessed by CPU.
L
lujun 已提交
916 917 918 919 920 921

    Examples:
        .. code-block:: python

          cpu_place = fluid.CPUPlace()

922
        )DOC")
923
      .def(py::init<>())
S
sneaxiy 已提交
924 925 926 927 928 929
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
930
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
931

932 933 934
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
    CUDAPinnedPlace is a descriptor of a device. The memory of CUDAPinnedPlace
    can be accessed by GPU and CPU.
L
lujun 已提交
935 936 937 938 939 940

    Examples:
        .. code-block:: python

          place = fluid.CUDAPinnedPlace()

941
        )DOC")
S
sneaxiy 已提交
942
      .def("__init__",
S
sneaxiy 已提交
943
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
944 945 946
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
947
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
948
           })
S
sneaxiy 已提交
949 950 951 952 953 954 955 956
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
957 958
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
959 960
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
961 962 963 964 965
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
966 967
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
968 969 970 971 972 973
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
974 975 976 977
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
978 979
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
980 981 982 983 984
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
985
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
986
             self = gpu_place;
C
chengduoZH 已提交
987 988
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
989 990
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
991
      });
Y
Yu Yang 已提交
992

Y
Yu Yang 已提交
993 994 995
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
996
                    proto::OpDesc desc;
Y
Yu Yang 已提交
997 998 999 1000 1001
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
1002
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
1003
                  })
1004
      .def("run",
1005
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1006 1007 1008
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1009
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1010 1011 1012 1013 1014
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1015 1016 1017 1018 1019 1020 1021
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1022 1023
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1024
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1025
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1026 1027 1028 1029
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1030

F
fengjiayi 已提交
1031
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1032
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1033
      .def("close", &Executor::Close)
D
dongdaxiang 已提交
1034
      .def("run_from_dataset", &Executor::RunFromDataset)
S
sneaxiy 已提交
1035
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1036 1037
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1038
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1039 1040
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1041
      });
S
sneaxiy 已提交
1042

D
dzhwinter 已提交
1043
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1044
  m.def("init_glog", framework::InitGLOG);
1045
  m.def("init_dgc", framework::InitDGC);
X
Xin Pan 已提交
1046 1047
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1048

1049
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1050
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1051
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1052
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1053
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1054 1055 1056 1057 1058 1059
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1060

1061
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1062
  m.def("get_fetch_variable", framework::GetFetchVariable);
1063
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1064

X
Xin Pan 已提交
1065 1066
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1067 1068 1069 1070 1071
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1072

Y
Yu Yang 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
    Array of LoDTensor.

    Examples:
        .. code-block:: python
        
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1092 1093
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1104 1105 1106 1107 1108 1109
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
           )DOC");
Y
Yu Yang 已提交
1124

D
dzhwinter 已提交
1125 1126 1127
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
1128
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1129
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1130
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1131

P
peizhilin 已提交
1132
#ifndef _WIN32
D
dangqingqing 已提交
1133 1134 1135
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1136
#endif
P
peizhilin 已提交
1137
#endif
Y
Yu Yang 已提交
1138

1139 1140 1141 1142
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1143
      .value("kAll", platform::ProfilerState::kAll)
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1157
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1158
  m.def("reset_profiler", platform::ResetProfiler);
1159
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1160 1161 1162
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1163

1164 1165
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1166
      .def("has", &ir::Pass::Has)
1167 1168 1169
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1170
           })
1171
      .def(
1172
          "set",
1173 1174 1175
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1176 1177
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
F
flame 已提交
1178 1179
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1180
        self.Apply(graph.get());
F
flame 已提交
1181
      });
1182

X
fix  
Xin Pan 已提交
1183 1184
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1199
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1200

Y
yuyang18 已提交
1201
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1202 1203 1204 1205
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1217 1218 1219

        )DOC");

Y
yuyang18 已提交
1220
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1221 1222 1223 1224 1225
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1236
      .def_property(
1237 1238 1239 1240
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1241 1242 1243 1244
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1245 1246 1247 1248 1249
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1250 1251 1252 1253
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
1254 1255 1256 1257 1258 1259 1260
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1272
              )DOC")
Q
Qiao Longfei 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
                user call pe.run() in python
              )DOC")
1284 1285 1286 1287 1288
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1289

Y
yuyang18 已提交
1290
  exec_strategy.def_property(
Y
yuyang18 已提交
1291 1292 1293 1294 1295 1296 1297
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1298 1299
      });

C
chengduo 已提交
1300 1301 1302 1303
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
1315
)DOC");
Y
yuyang18 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
1332
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1333
            self.reduce_ = strategy;
C
chengduo 已提交
1334 1335 1336 1337 1338 1339 1340
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
1341 1342 1343 1344 1345
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
1346
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1347
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1348 1349 1350 1351 1352 1353
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
1354 1355 1356 1357
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
1358
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1359
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1360 1361 1362 1363
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
S
sneaxiy 已提交
1364 1365 1366 1367 1368 1369
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1370
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1380
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1381 1382
            self.remove_unnecessary_lock_ = b;
          },
S
sneaxiy 已提交
1383
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default True.)DOC")
1384 1385 1386 1387 1388 1389
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
1402 1403 1404 1405 1406 1407
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
1408
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1409 1410 1411 1412 1413
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_relu_depthwise_conv_ = b;
          },
          R"DOC(The type is BOOL, fuse_relu_depthwise_conv indicate whether
                      to fuse relu and depthwise_conv2d,
                      it will save GPU memory and may make the execution faster.
                      This options is only available in GPU devices.
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
                      Default False.)DOC")
      .def_property(
          "fuse_broadcast_ops",
          [](const BuildStrategy &self) { return self.fuse_broadcast_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.fuse_broadcast_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_broadcast_op indicates whether
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
                      for NCCLReduce operations for a period of time. Default False.)DOC")
C
chengduo 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_all_optimizer_ops_;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE(!self.IsFinalized(),
                                     "BuildStrategy is finlaized.");
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
            self.sync_batch_norm_ = b;
          },
          R"DOC(The type is BOOL, sync_batch_norm indicates whether to use
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.

                Current implementation doesn't support FP16 training and CPU.
                And only synchronous on one machine, not all machines.

                Default False)DOC")
D
dzhwinter 已提交
1465 1466 1467
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; },
          R"DOC(The type is BOOL, memory opitimize aims to save total memory 
                consumption, set to True to enable it.
                
                Memory Optimize is our experimental feature, some variables 
                may be reused/removed by optimize strategy. If you need to
                fetch some variable values when using this feature, please
                set the persistable property of the variables to True.
                
                Default False)DOC")
1478 1479 1480 1481
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
          [](BuildStrategy &self, bool b) { self.is_distribution_ = b; })
Q
can run  
Qiao Longfei 已提交
1482 1483 1484
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
1485
      .def_property(
D
dzhwinter 已提交
1486 1487 1488
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
1489 1490 1491 1492
      .def_property(
          "fuse_all_reduce_ops",
          [](const BuildStrategy &self) { return self.fuse_all_reduce_ops_; },
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
1493 1494 1495 1496
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
1497 1498 1499 1500
      .def_property(
          "cache_expected_kernel",
          [](const BuildStrategy &self) { return self.cache_expected_kernel_; },
          [](BuildStrategy &self, bool b) { self.cache_expected_kernel_ = b; })
1501 1502 1503 1504 1505 1506 1507 1508 1509
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
1510
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1511
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1512 1513 1514 1515 1516
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1517 1518

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
1519
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
1520
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
1521
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
1522 1523 1524 1525
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1526 1527 1528 1529 1530
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
1531 1532 1533
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
1534 1535 1536 1537
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1538 1539 1540 1541 1542 1543
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1544

1545
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1546
  BindAsyncExecutor(&m);
D
dongdaxiang 已提交
1547
  BindFleetWrapper(&m);
W
wopeizl 已提交
1548
#ifndef _WIN32
D
dongdaxiang 已提交
1549
  BindNCCLWrapper(&m);
W
wopeizl 已提交
1550
#endif
F
flame 已提交
1551 1552
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
1553
  BindInferenceApi(&m);
1554
  BindDataset(&m);
L
Luo Tao 已提交
1555
}
1556
}  // namespace pybind
1557
}  // namespace paddle