random.py 41.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define random functions
S
silingtong123 已提交
16

Z
zhiboniu 已提交
17 18
from ..framework import core
from ..framework import convert_np_dtype_to_dtype_, dygraph_only
19
from ..framework import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
W
wanghuancoder 已提交
23
from paddle import _C_ops
Z
zhiboniu 已提交
24
from paddle.static import Variable
F
From00 已提交
25
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph, _current_expected_place
S
silingtong123 已提交
26

27 28
__all__ = []

S
silingtong123 已提交
29

L
Leo Chen 已提交
30 31 32
def bernoulli(x, name=None):
    """

33
    For each element :math:`x_i` in input ``x``, take a sample from the Bernoulli distribution, also called two-point distribution, with success probability :math:`x_i`. The Bernoulli distribution with success probability :math:`x_i` is a discrete probability distribution with probability mass function
L
Leo Chen 已提交
34

35 36 37 38 39
    .. math::
        p(y)=\\begin{cases}
            x_i,&y=1\\\\
            1-x_i,&y=0
        \end{cases}.
L
Leo Chen 已提交
40 41

    Args:
42 43 44
        x (Tensor): The input Tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

L
Leo Chen 已提交
45
    Returns: 
46
        Tensor: A Tensor filled samples from Bernoulli distribution, whose shape and dtype are same as ``x``.
L
Leo Chen 已提交
47 48 49 50

    Examples:
        .. code-block:: python

51
            import paddle
L
Leo Chen 已提交
52

L
Leo Chen 已提交
53 54 55
            paddle.set_device('cpu')  # on CPU device
            paddle.seed(100) 

56
            x = paddle.rand([2,3])
L
Leo Chen 已提交
57 58 59
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
60

61
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
62 63 64
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
65 66 67

    """

H
hong 已提交
68 69 70 71
    if in_dygraph_mode():
        return _C_ops.final_state_bernoulli(x)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
72
        return _C_ops.bernoulli(x)
L
Leo Chen 已提交
73 74 75 76 77

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
78 79 80 81 82
        dtype=x.dtype)  # maybe set out to int32 ?
    helper.append_op(type='bernoulli',
                     inputs={"X": x},
                     outputs={'Out': out},
                     attrs={})
83
    out.stop_gradient = True
L
Leo Chen 已提交
84 85 86
    return out


87
def poisson(x, name=None):
88
    r"""
89
    Returns a tensor filled with random number from a Poisson Distribution.
90 91 92

    .. math::

93
        out_i \sim Poisson (lambda = x_i)
94 95 96 97 98 99 100 101 102 103 104 105 106 107

    Args:
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
108
            paddle.set_device('cpu')
109
            paddle.seed(100)
110 111 112

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
113 114
            #[[2., 5., 0.],
            # [5., 1., 3.]]
115 116 117

    """

Z
zhiboniu 已提交
118
    if paddle.in_dynamic_mode():
119 120 121 122 123 124
        return _C_ops.poisson(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")

    helper = LayerHelper("poisson", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
125 126 127 128
    helper.append_op(type='poisson',
                     inputs={'X': x},
                     outputs={'Out': out},
                     attrs={})
129 130 131
    return out


P
pangyoki 已提交
132 133
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
134
    Returns a Tensor filled with random values sampled from a Multinomical
P
pangyoki 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

154 155
            import paddle

C
cnn 已提交
156
            paddle.seed(100) # on CPU device
157
            x = paddle.rand([2,4])
158
            print(x)
159 160 161
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
162
            paddle.seed(200) # on CPU device
163
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
164
            print(out1)
165 166 167 168 169 170 171
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
172
            paddle.seed(300) # on CPU device
173
            out3 = paddle.multinomial(x, num_samples=3)
174
            print(out3)
175 176
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
177 178 179

    """

180 181 182
    assert core.is_compiled_with_rocm() == False, (
        "multinomial op is not supported on ROCM yet.")

H
hong 已提交
183 184 185 186
    if in_dygraph_mode():
        return _C_ops.final_state_multinomial(x, num_samples, replacement)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
187 188
        return _C_ops.multinomial(x, 'num_samples', num_samples, 'replacement',
                                  replacement)
P
pangyoki 已提交
189 190 191 192 193 194

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
195 196 197 198 199 200 201
    helper.append_op(type='multinomial',
                     inputs={"X": x},
                     outputs={'Out': out},
                     attrs={
                         'num_samples': num_samples,
                         'replacement': replacement
                     })
202
    out.stop_gradient = True
P
pangyoki 已提交
203 204 205
    return out


206
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
207
    """
208
    Returns a Tensor filled with random values sampled from a Gaussian
209 210 211
    distribution, with ``shape`` and ``dtype``.

    Args:
212
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
213 214 215 216
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
217 218
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
219
            is 1.0.
220 221
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
222 223 224
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
225
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
226 227 228 229 230

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
231 232 233
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

234 235 236 237
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
238 239
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
240 241 242
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

243 244 245
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
246
        return _C_ops.final_state_gaussian_random(shape, float(mean),
247 248 249 250
                                                  float(std), seed, dtype,
                                                  place)

    if _in_legacy_dygraph():
251
        shape = utils.convert_shape_to_list(shape)
252 253
        return _C_ops.gaussian_random('shape',
                                      shape, 'mean', float(mean), 'std',
W
wanghuancoder 已提交
254
                                      float(std), 'seed', seed, 'dtype', dtype)
255

256
    check_shape(shape, op_type_for_check)
257 258 259 260 261 262 263 264 265 266
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
267 268 269 270
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type=op_type_for_check)
271

272
    helper = LayerHelper('gaussian', **locals())
273
    out = helper.create_variable_for_type_inference(dtype)
274 275 276 277
    helper.append_op(type='gaussian_random',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
278 279 280 281 282 283
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
284
    Returns a Tensor filled with random values sampled from a standard
285 286 287 288
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
289
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
290 291 292 293
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
294
        dtype (str|np.dtype, optional): The data type of the output Tensor.
295 296 297
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
298 299 300 301 302 303 304 305 306 307 308 309 310 311
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
312
            out1 = paddle.standard_normal(shape=[2, 3])
313 314 315 316
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
317 318
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
319
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
320 321 322 323 324 325 326 327
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
328
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
329
            out3 = paddle.standard_normal(shape_tensor)
330 331 332 333
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
334
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
335 336


Z
zhupengyang 已提交
337 338
def randn(shape, dtype=None, name=None):
    """
339
    Returns a Tensor filled with random values sampled from a standard
Z
zhupengyang 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
389 390 391 392


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
393
    Returns a Tensor filled with random values sampled from a normal
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

433
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
434 435 436
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

437
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
438 439 440 441
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
Z
zhiboniu 已提交
442
    if not paddle.in_dynamic_mode():
443 444 445 446 447 448 449 450 451 452 453 454 455
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
456
            check_shape(shape, 'normal')
457 458 459 460 461 462 463 464 465 466 467 468 469 470

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
471
        return gaussian(shape=shape, mean=mean, std=std, name=name)
472 473

    out = out * std + mean
Z
zhiboniu 已提交
474
    if not paddle.in_dynamic_mode():
475 476 477 478
        out.stop_grediant = True
    return out


479
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
480
    """
481
    Returns a Tensor filled with random values sampled from a uniform
P
pangyoki 已提交
482 483 484
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
485

Z
zhupengyang 已提交
486
    .. code-block:: text
李灿 已提交
487

P
pangyoki 已提交
488 489 490 491 492 493 494 495 496 497 498
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
499 500 501 502
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
503 504 505 506
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
507 508 509
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
510
            time. Default is 0.
511 512
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
P
pangyoki 已提交
513 514 515 516 517 518 519

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python
520
          :name: code-example1
P
pangyoki 已提交
521 522 523 524 525
            
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
526 527 528 529
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
530 531 532

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
533 534 535 536 537
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
538 539 540

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
541
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
542 543 544
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
545
    """
546 547 548 549
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
550 551
                "uniform/rand only supports [float32, float64], but the default dtype is {}"
                .format(dtype))
552

P
pangyoki 已提交
553 554 555
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

556 557
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
558
        return _C_ops.final_state_uniform_random(shape, dtype, float(min),
559 560 561 562
                                                 float(max), seed,
                                                 _current_expected_place())

    if _in_legacy_dygraph():
563
        shape = utils.convert_shape_to_list(shape)
564
        return _C_ops.uniform_random('shape', shape, 'min', float(min), 'max',
W
wanghuancoder 已提交
565
                                     float(max), 'seed', seed, 'dtype', dtype)
P
pangyoki 已提交
566

567 568
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
569 570 571

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
572 573 574 575
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='uniform/rand')
P
pangyoki 已提交
576

577
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
578
    out = helper.create_variable_for_type_inference(dtype)
579 580 581 582
    helper.append_op(type="uniform_random",
                     inputs=inputs,
                     attrs=attrs,
                     outputs={"Out": out})
583
    out.stop_gradient = True
P
pangyoki 已提交
584 585 586
    return out


J
JYChen 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
    This is the inplace version of OP ``uniform``, which returns a Tensor filled 
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
    
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. If seed is 0, 
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
            
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
622 623 624 625 626 627
    if in_dygraph_mode():
        return _C_ops.final_state_uniform_random_inplace_(
            x, min, max, seed, 0, 0, 1.0)
    else:
        return _C_ops.uniform_random_inplace_(x, 'min', min, 'max', max, 'seed',
                                              seed)
J
JYChen 已提交
628 629


630
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
631
    """
632
    Returns a Tensor filled with random integers from a discrete uniform
633 634
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
635 636

    Args:
637
        low (int, optional): The lower bound on the range of random values to generate.
638 639
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
640
        high (int, optional): The upper bound on the range of random values to
641 642
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
643
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
644 645 646 647
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
648
        dtype (str|np.dtype, optional): The data type of the
649 650
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
651
        name (str, optional): The default value is None.  Normally there is no
652 653
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
654 655

    Returns: 
656 657
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
658 659 660

    Examples:
        .. code-block:: python
661

662
            import paddle
663

664 665
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
666
            out1 = paddle.randint(low=-5, high=5, shape=[3])
667 668 669 670
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
671 672 673
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
674 675 676 677 678
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
679
            shape_tensor = paddle.to_tensor(3)
Z
zhupengyang 已提交
680
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
681 682 683 684
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
685
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
686 687 688 689 690
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
691
            out5 = paddle.randint(10)
692
            # [7]  # random
S
silingtong123 已提交
693

694 695
    """
    if high is None:
696 697
        if low <= 0:
            raise ValueError(
698 699
                "If high is None, low must be greater than 0, but received low = {0}."
                .format(low))
700 701
        high = low
        low = 0
S
silingtong123 已提交
702 703
    if dtype is None:
        dtype = 'int64'
704 705
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
706

F
From00 已提交
707 708 709 710 711
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
        return _C_ops.final_state_randint(low, high, shape, dtype, place)
    if _in_legacy_dygraph():
712
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
713 714
        return _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                              0, 'dtype', dtype)
S
silingtong123 已提交
715

716
    check_shape(shape, 'randint')
717 718
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
719 720 721 722
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

723 724
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
725 726 727 728
    utils.get_shape_tensor_inputs(inputs=inputs,
                                  attrs=attrs,
                                  shape=shape,
                                  op_type='randint')
729 730 731

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
732 733 734 735
    helper.append_op(type='randint',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
736
    out.stop_gradient = True
S
silingtong123 已提交
737
    return out
C
cc 已提交
738 739


740 741
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
742
    Returns a Tensor filled with random integers from a discrete uniform
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
    (use ``dtype`` if ``dtype`` is not None) 
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
        x (Tensor): The input tensor which specifies shape. The dtype of ``x`` 
            can be bool, int32, int64, float16, float32, float64.
        low (int): The lower bound on the range of random values to generate.
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
        dtype (str|np.dtype, optional): The data type of the
            output tensor. Supported data types: bool, int32, int64, float16, 
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
867 868
                "If high is None, low must be greater than 0, but received low = {0}."
                .format(low))
869 870 871 872 873 874
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
875
    shape = paddle.shape(x)
876 877 878 879 880 881

    if low >= high:
        raise ValueError(
            "randint_like's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

Z
zhiboniu 已提交
882
    if paddle.in_dynamic_mode():
883 884 885 886 887 888 889 890
        shape = utils.convert_shape_to_list(shape)
        out = _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                             0, 'dtype', core.VarDesc.VarType.INT64)
        out = paddle.cast(out, dtype)
        return out

    check_shape(shape, 'randint_like')
    check_dtype(dtype, 'dtype',
891 892
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'randint_like')
893

894
    inputs = {"ShapeTensor": shape}
895 896 897 898 899 900 901 902 903 904
    attrs = {
        'low': low,
        'high': high,
        'seed': 0,
        'dtype': core.VarDesc.VarType.INT64
    }

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)
905 906 907 908
    helper.append_op(type='randint',
                     inputs=inputs,
                     outputs={'Out': out},
                     attrs=attrs)
909 910 911 912 913
    out.stop_gradient = True
    out = paddle.cast(out, dtype)
    return out


914
def randperm(n, dtype="int64", name=None):
C
cc 已提交
915
    """
916
    Returns a 1-D Tensor filled with random permutation values from 0
917
    to n-1, with ``dtype``.
C
cc 已提交
918 919

    Args:
920 921
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
922 923
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
924
        name (str, optional): The default value is None. Normally there is no
925 926
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
927 928

    Returns:
929 930
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
931 932 933 934

    Examples:
        .. code-block:: python

935
            import paddle
C
cc 已提交
936

937
            out1 = paddle.randperm(5)
938
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
939

940
            out2 = paddle.randperm(7, 'int32')
941
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
942 943
 
    """
944 945 946
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zyfncg 已提交
947
    if in_dygraph_mode():
F
From00 已提交
948
        return _C_ops.final_state_randperm(n, dtype, _current_expected_place())
Z
zyfncg 已提交
949
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
950
        return _C_ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
951 952 953

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
954 955
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
956 957

    helper = LayerHelper("randperm", **locals())
958 959
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
960 961 962 963
    helper.append_op(type='randperm',
                     inputs={},
                     outputs={'Out': out},
                     attrs=attrs)
964
    out.stop_gradient = True
C
cc 已提交
965
    return out
X
Xing Wu 已提交
966 967


968
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
969
    """
970
    Returns a Tensor filled with random values sampled from a uniform
971
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
972 973

    Args:
974
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
975 976 977 978
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
979
        dtype (str|np.dtype, optional): The data type of the output Tensor.
980 981 982
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
983
        name (str, optional): The default value is None. Normally there is no
984 985
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
986

X
Xing Wu 已提交
987
    Returns:
988 989
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
990 991 992 993

    Examples:
        .. code-block:: python

994
            import paddle
995

996
            # example 1: attr shape is a list which doesn't contain Tensor.
997
            out1 = paddle.rand(shape=[2, 3])
998 999 1000 1001
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
1002 1003
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
1004
            out2 = paddle.rand(shape=[dim1, dim2, 2])
1005 1006 1007 1008 1009 1010 1011 1012
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
1013
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1014
            out3 = paddle.rand(shape_tensor)
1015 1016
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1017 1018

    """
1019
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1020 1021 1022


def exponential_(x, lam=1.0, name=None):
1023
    r"""
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

    ``lam`` is :math:`\lambda` parameter of Exponential Distribution. 
    
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1034
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
1054 1055 1056
    if in_dygraph_mode():
        return _C_ops.final_state_exponential_(x, lam)
    elif paddle.in_dynamic_mode():
1057 1058 1059 1060 1061
        return _C_ops.exponential_(x, "lambda", lam)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")

    helper = LayerHelper("exponential", **locals())
1062 1063 1064 1065
    helper.append_op(type='exponential',
                     inputs={"X": x},
                     outputs={'Out': x},
                     attrs={"lambda": lam})
1066
    return x