random.py 29.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

C
cc 已提交
17
from ..fluid import core
18
from ..fluid.framework import in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
C
cc 已提交
19
from ..fluid.layer_helper import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
S
silingtong123 已提交
23

24 25
__all__ = []

S
silingtong123 已提交
26

L
Leo Chen 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
def bernoulli(x, name=None):
    """

    This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

50
            import paddle
L
Leo Chen 已提交
51

L
Leo Chen 已提交
52 53 54
            paddle.set_device('cpu')  # on CPU device
            paddle.seed(100) 

55
            x = paddle.rand([2,3])
L
Leo Chen 已提交
56 57 58
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
59

60
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
61 62 63
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

    """

    if in_dygraph_mode():
        return core.ops.bernoulli(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
    return out


P
pangyoki 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a Multinomical
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

102 103
            import paddle

C
cnn 已提交
104
            paddle.seed(100) # on CPU device
105
            x = paddle.rand([2,4])
106
            print(x)
107 108 109
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
110
            paddle.seed(200) # on CPU device
111
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
112
            print(out1)
113 114 115 116 117 118 119
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
120
            paddle.seed(300) # on CPU device
121
            out3 = paddle.multinomial(x, num_samples=3)
122
            print(out3)
123 124
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
125 126 127

    """

128 129 130
    assert core.is_compiled_with_rocm() == False, (
        "multinomial op is not supported on ROCM yet.")

P
pangyoki 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    if in_dygraph_mode():
        return core.ops.multinomial(x, 'num_samples', num_samples,
                                    'replacement', replacement)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
    helper.append_op(
        type='multinomial',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={'num_samples': num_samples,
               'replacement': replacement})
    return out


149
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
150 151 152 153 154
    """
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.

    Args:
155
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
156 157 158 159
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
160 161
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
162
            is 1.0.
163 164
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
165 166 167
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
168
        name (str, optional): The default value is None. Normally there is no
169 170 171 172 173 174 175
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
176 177 178
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

179 180 181 182
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
183 184
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
185 186 187 188
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
189
        shape = utils.convert_shape_to_list(shape)
190 191 192 193 194
        return core.ops.gaussian_random('shape', shape, 'mean',
                                        float(mean), 'std',
                                        float(std), 'seed', seed, 'dtype',
                                        dtype)

195
    check_shape(shape, op_type_for_check)
196 197 198 199 200 201 202 203 204 205
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
206
    utils.get_shape_tensor_inputs(
207 208
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)

209
    helper = LayerHelper('gaussian', **locals())
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='gaussian_random',
        inputs=inputs,
        outputs={'Out': out},
        attrs=attrs)
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
227
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
228 229 230 231
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
232
        dtype (str|np.dtype, optional): The data type of the output Tensor.
233 234 235
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
236 237 238 239 240 241 242 243 244 245 246 247 248 249
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
250
            out1 = paddle.standard_normal(shape=[2, 3])
251 252 253 254
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
255 256
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
257
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
258 259 260 261 262 263 264 265
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
266
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
267
            out3 = paddle.standard_normal(shape_tensor)
268 269 270 271
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
272
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
273 274


Z
zhupengyang 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
def randn(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

371
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
372 373 374
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

375
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
    if not in_dygraph_mode():
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
394
            check_shape(shape, 'normal')
395 396 397 398 399 400 401 402 403 404 405 406 407 408

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
409
        return gaussian(shape=shape, mean=mean, std=std, name=name)
410 411 412 413 414 415 416

    out = out * std + mean
    if not in_dygraph_mode():
        out.stop_grediant = True
    return out


417
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
418 419 420 421 422
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
423

Z
zhupengyang 已提交
424
    .. code-block:: text
李灿 已提交
425

P
pangyoki 已提交
426 427 428 429 430 431 432 433 434 435 436
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
437 438 439 440
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
468 469 470 471
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
472 473 474

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
475 476 477 478 479
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
480 481 482

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
483
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
484 485 486
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
487
    """
488 489 490 491
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
492 493
                "uniform/rand only supports [float32, float64], but the default dtype is {}".
                format(dtype))
494

P
pangyoki 已提交
495 496 497 498
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
499
        shape = utils.convert_shape_to_list(shape)
P
pangyoki 已提交
500 501 502 503
        return core.ops.uniform_random('shape', shape, 'min',
                                       float(min), 'max',
                                       float(max), 'seed', seed, 'dtype', dtype)

504 505
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
506 507 508

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
509
    utils.get_shape_tensor_inputs(
510
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand')
P
pangyoki 已提交
511

512
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
513 514 515 516 517 518 519
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
    return out


520
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
521
    """
522 523 524
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
525 526

    Args:
527
        low (int): The lower bound on the range of random values to generate.
528 529
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
530
        high (int, optional): The upper bound on the range of random values to
531 532
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
533
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
534 535 536 537
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
538
        dtype (str|np.dtype, optional): The data type of the
539 540
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
541
        name (str, optional): The default value is None.  Normally there is no
542 543
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
544 545

    Returns: 
546 547
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
548 549 550

    Examples:
        .. code-block:: python
551

552
            import paddle
553

554 555
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
556
            out1 = paddle.randint(low=-5, high=5, shape=[3])
557 558 559 560
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
561 562 563
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
564 565 566 567 568
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
569
            shape_tensor = paddle.to_tensor(3)
Z
zhupengyang 已提交
570
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
571 572 573 574
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
575
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
576 577 578 579 580
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
581
            out5 = paddle.randint(10)
582
            # [7]  # random
S
silingtong123 已提交
583

584 585
    """
    if high is None:
586 587 588 589
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
590 591
        high = low
        low = 0
S
silingtong123 已提交
592 593
    if dtype is None:
        dtype = 'int64'
594 595
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
596 597

    if in_dygraph_mode():
598
        shape = utils.convert_shape_to_list(shape)
599 600
        return core.ops.randint('shape', shape, 'low', low, 'high', high,
                                'seed', 0, 'dtype', dtype)
S
silingtong123 已提交
601

602
    check_shape(shape, 'randint')
603 604
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
605 606 607 608
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

609 610
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
611
    utils.get_shape_tensor_inputs(
612 613 614 615 616 617
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
silingtong123 已提交
618
    return out
C
cc 已提交
619 620


621
def randperm(n, dtype="int64", name=None):
C
cc 已提交
622
    """
623 624
    This OP returns a 1-D Tensor filled with random permutation values from 0
    to n-1, with ``dtype``.
C
cc 已提交
625 626

    Args:
627 628
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
629 630
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
631
        name (str, optional): The default value is None. Normally there is no
632 633
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
634 635

    Returns:
636 637
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
638 639 640 641

    Examples:
        .. code-block:: python

642
            import paddle
C
cc 已提交
643

644
            out1 = paddle.randperm(5)
645
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
646

647
            out2 = paddle.randperm(7, 'int32')
648
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
649 650
 
    """
651 652 653 654 655
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
656 657 658

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
659 660
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
661 662

    helper = LayerHelper("randperm", **locals())
663 664 665 666
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
667
    out.stop_gradient = True
C
cc 已提交
668
    return out
X
Xing Wu 已提交
669 670


671
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
672
    """
673 674
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
675 676

    Args:
677
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
678 679 680 681
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
682
        dtype (str|np.dtype, optional): The data type of the output Tensor.
683 684 685
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
686
        name (str, optional): The default value is None. Normally there is no
687 688
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
689

X
Xing Wu 已提交
690
    Returns:
691 692
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
693 694 695 696

    Examples:
        .. code-block:: python

697
            import paddle
698

699
            # example 1: attr shape is a list which doesn't contain Tensor.
700
            out1 = paddle.rand(shape=[2, 3])
701 702 703 704
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
705 706
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
707
            out2 = paddle.rand(shape=[dim1, dim2, 2])
708 709 710 711 712 713 714 715
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
716
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
717
            out3 = paddle.rand(shape_tensor)
718 719
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
720 721

    """
722
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)