Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
bc106fad
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bc106fad
编写于
8月 03, 2022
作者:
W
wuyefeilin
提交者:
GitHub
8月 03, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PHI] Move uniform random inplace op to PHI. (#44700)
上级
cdbfeff4
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
484 addition
and
87 deletion
+484
-87
paddle/fluid/operators/uniform_random_inplace_op.cc
paddle/fluid/operators/uniform_random_inplace_op.cc
+18
-85
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+11
-0
paddle/phi/api/yaml/legacy_backward.yaml
paddle/phi/api/yaml/legacy_backward.yaml
+10
-0
paddle/phi/infermeta/backward.cc
paddle/phi/infermeta/backward.cc
+18
-0
paddle/phi/infermeta/backward.h
paddle/phi/infermeta/backward.h
+9
-0
paddle/phi/infermeta/unary.cc
paddle/phi/infermeta/unary.cc
+37
-0
paddle/phi/infermeta/unary.h
paddle/phi/infermeta/unary.h
+9
-0
paddle/phi/kernels/cpu/uniform_random_inplace_grad_kernel.cc
paddle/phi/kernels/cpu/uniform_random_inplace_grad_kernel.cc
+44
-0
paddle/phi/kernels/cpu/uniform_random_inplace_kernel.cc
paddle/phi/kernels/cpu/uniform_random_inplace_kernel.cc
+54
-0
paddle/phi/kernels/gpu/uniform_random_inplace_grad_kernel.cu
paddle/phi/kernels/gpu/uniform_random_inplace_grad_kernel.cu
+44
-0
paddle/phi/kernels/gpu/uniform_random_inplace_kernel.cu
paddle/phi/kernels/gpu/uniform_random_inplace_kernel.cu
+88
-0
paddle/phi/kernels/uniform_random_inplace_grad_kernel.h
paddle/phi/kernels/uniform_random_inplace_grad_kernel.h
+32
-0
paddle/phi/kernels/uniform_random_inplace_kernel.h
paddle/phi/kernels/uniform_random_inplace_kernel.h
+32
-0
paddle/phi/ops/compat/uniform_random_inplace_sig.cc
paddle/phi/ops/compat/uniform_random_inplace_sig.cc
+42
-0
python/paddle/fluid/tests/unittests/test_uniform_random_inplace_op.py
...e/fluid/tests/unittests/test_uniform_random_inplace_op.py
+30
-0
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+6
-2
未找到文件。
paddle/fluid/operators/uniform_random_inplace_op.cc
浏览文件 @
bc106fad
...
...
@@ -12,9 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/
generator
.h"
#include "paddle/fluid/framework/
infershape_utils
.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -54,34 +56,6 @@ class UniformRandomInplaceOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"UniformRandomInplaceOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Out"
),
"Output"
,
"Out"
,
"UniformRandomInplaceOp"
);
PADDLE_ENFORCE_LT
(
ctx
->
Attrs
().
Get
<
float
>
(
"min"
),
ctx
->
Attrs
().
Get
<
float
>
(
"max"
),
platform
::
errors
::
InvalidArgument
(
"The uniform_random's min must less then max. But received min = "
"%f great than or equal max = %f."
,
ctx
->
Attrs
().
Get
<
float
>
(
"min"
),
ctx
->
Attrs
().
Get
<
float
>
(
"max"
)));
PADDLE_ENFORCE_GE
(
ctx
->
Attrs
().
Get
<
int
>
(
"diag_num"
),
0
,
platform
::
errors
::
InvalidArgument
(
"The uniform_random's diag_num must greater than or "
"equal 0. But recevied diag_num (%d) < 0."
,
ctx
->
Attrs
().
Get
<
int
>
(
"diag_num"
)));
PADDLE_ENFORCE_GE
(
ctx
->
Attrs
().
Get
<
int
>
(
"diag_step"
),
0
,
platform
::
errors
::
InvalidArgument
(
"The uniform_random's diag_step must greater than or "
"equal 0. But recevied diag_step (%d) < 0."
,
ctx
->
Attrs
().
Get
<
int
>
(
"diag_step"
)));
auto
xdim
=
ctx
->
GetInputDim
(
"X"
);
ctx
->
SetOutputDim
(
"Out"
,
xdim
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -90,23 +64,9 @@ class UniformRandomInplaceOp : public framework::OperatorWithKernel {
}
};
template
<
typename
T
>
class
CPUUniformRandomInplaceKernel
:
public
framework
::
OpKernel
<
T
>
{
class
UniformRandomInplaceGradOp
:
public
framework
::
OperatorWithKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
out_var
=
ctx
.
OutputVar
(
"Out"
);
auto
*
tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
T
*
data
=
tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
size
=
tensor
->
numel
();
std
::
uniform_real_distribution
<
T
>
dist
(
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"min"
)),
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"max"
)));
auto
engine
=
paddle
::
framework
::
GetCPURandomEngine
(
static_cast
<
unsigned
int
>
(
ctx
.
Attr
<
int
>
(
"seed"
)));
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
data
[
i
]
=
dist
(
*
engine
);
}
}
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
};
class
UniformRandomInplaceOpVarTypeInference
...
...
@@ -115,23 +75,6 @@ class UniformRandomInplaceOpVarTypeInference
void
operator
()(
framework
::
InferVarTypeContext
*
ctx
)
const
override
{}
};
class
UniformRandomInplaceGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input"
,
"Out_Grad"
,
"UniformRandomInplaceGradOp"
);
auto
x_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
SetOutputDim
(
x_grad_name
,
x_dims
);
}
}
};
template
<
typename
T
>
class
UniformRandomInplaceGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
...
...
@@ -146,18 +89,6 @@ class UniformRandomInplaceGradOpMaker : public framework::SingleGradOpMaker<T> {
}
};
template
<
typename
T
>
class
CPUUniformRandomInplaceGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
dx
)
{
auto
*
data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
fill
(
data
,
data
+
dx
->
numel
(),
T
(
0
));
}
}
};
}
// namespace operators
}
// namespace paddle
DECLARE_INPLACE_OP_INFERER
(
UniformRandomInplaceInferer
,
{
"X"
,
"Out"
});
...
...
@@ -165,6 +96,14 @@ DECLARE_INPLACE_OP_INFERER(UniformRandomInplaceGradInplaceInferer,
{
paddle
::
framework
::
GradVarName
(
"Out"
),
paddle
::
framework
::
GradVarName
(
"X"
)});
DECLARE_INFER_SHAPE_FUNCTOR
(
uniform_random_inplace
,
UniformRandomInplaceInferShapeFunctor
,
PD_INFER_META
(
phi
::
UniformRandomInplaceInferMeta
));
DECLARE_INFER_SHAPE_FUNCTOR
(
uniform_random_inplace_grad
,
UniformRandomInplaceGradInferShapeFunctor
,
PD_INFER_META
(
phi
::
UniformRandomInplaceGradInferMeta
));
REGISTER_OPERATOR
(
uniform_random_inplace
,
paddle
::
operators
::
UniformRandomInplaceOp
,
paddle
::
operators
::
UniformRandomInplaceOpMaker
,
...
...
@@ -173,15 +112,9 @@ REGISTER_OPERATOR(uniform_random_inplace,
paddle
::
operators
::
UniformRandomInplaceGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
paddle
::
operators
::
UniformRandomInplaceOpVarTypeInference
,
UniformRandomInplaceInferer
);
UniformRandomInplaceInferer
,
UniformRandomInplaceInferShapeFunctor
);
REGISTER_OPERATOR
(
uniform_random_inplace_grad
,
paddle
::
operators
::
UniformRandomInplaceGradOp
,
UniformRandomInplaceGradInplaceInferer
);
REGISTER_OP_CPU_KERNEL
(
uniform_random_inplace
,
paddle
::
operators
::
CPUUniformRandomInplaceKernel
<
float
>
,
paddle
::
operators
::
CPUUniformRandomInplaceKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
uniform_random_inplace_grad
,
paddle
::
operators
::
CPUUniformRandomInplaceGradKernel
<
float
>
,
paddle
::
operators
::
CPUUniformRandomInplaceGradKernel
<
double
>
);
UniformRandomInplaceGradInplaceInferer
,
UniformRandomInplaceGradInferShapeFunctor
);
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
bc106fad
...
...
@@ -2726,3 +2726,14 @@
kernel
:
func
:
overlap_add
backward
:
overlap_add_grad
-
api
:
uniform_random_inplace
args
:
(Tensor x, float min, float max, int seed, int diag_num, int diag_step, float diag_val)
output
:
Tensor(out)
infer_meta
:
func
:
UniformRandomInplaceInferMeta
kernel
:
func
:
uniform_random_inplace
data_type
:
x
inplace
:
(x -> out)
backward
:
uniform_random_inplace_grad
paddle/phi/api/yaml/legacy_backward.yaml
浏览文件 @
bc106fad
...
...
@@ -2512,6 +2512,16 @@
func
:
unfold_grad
no_need_buffer
:
x
-
backward_api
:
uniform_random_inplace_grad
forward
:
uniform_random_inplace(Tensor x, float min, float max, int seed, int diag_num, int diag_step, float diag_val) -> Tensor(out)
args
:
(Tensor out_grad, float min, float max, int seed, int diag_num, int diag_step, float diag_val)
output
:
Tensor(x_grad)
infer_meta
:
func
:
UniformRandomInplaceGradInferMeta
kernel
:
func
:
uniform_random_inplace_grad
inplace
:
(out_grad -> x_grad)
-
backward_api
:
unsqueeze_double_grad
forward
:
unsqueeze_grad(Tensor xshape, Tensor grad_out, IntArray axes) -> Tensor(grad_x)
args
:
(Tensor grad_x_grad, IntArray axes)
...
...
paddle/phi/infermeta/backward.cc
浏览文件 @
bc106fad
...
...
@@ -798,6 +798,24 @@ void StackGradInferMeta(const MetaTensor& out_grad,
}
}
void
UniformRandomInplaceGradInferMeta
(
const
MetaTensor
&
out_grad
,
float
min
,
float
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
float
diag_val
,
MetaTensor
*
x_grad
)
{
PADDLE_ENFORCE_NE
(
x_grad
,
nullptr
,
phi
::
errors
::
InvalidArgument
(
"The X@GRAD in UniformRandomInplaceGradInferMeta can't be nullptr."
));
auto
dims
=
out_grad
.
dims
();
x_grad
->
set_dims
(
dims
);
x_grad
->
set_dtype
(
out_grad
.
dtype
());
}
void
UnStackGradInferMeta
(
const
std
::
vector
<
const
MetaTensor
*>&
out_grad
,
int
axis
,
MetaTensor
*
x_grad
)
{
...
...
paddle/phi/infermeta/backward.h
浏览文件 @
bc106fad
...
...
@@ -330,6 +330,15 @@ void StackGradInferMeta(const MetaTensor& out_grad,
int
axis
,
std
::
vector
<
MetaTensor
*>
x_grad
);
void
UniformRandomInplaceGradInferMeta
(
const
MetaTensor
&
out_grad
,
float
min
,
float
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
float
diag_val
,
MetaTensor
*
x_grad
);
void
UnStackGradInferMeta
(
const
std
::
vector
<
const
MetaTensor
*>&
out_grad
,
int
axis
,
MetaTensor
*
x_grad
);
...
...
paddle/phi/infermeta/unary.cc
浏览文件 @
bc106fad
...
...
@@ -3623,6 +3623,43 @@ void UnfoldInferMeta(const MetaTensor& x,
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
}
void
UniformRandomInplaceInferMeta
(
const
MetaTensor
&
x
,
float
min
,
float
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
float
diag_val
,
MetaTensor
*
out
)
{
PADDLE_ENFORCE_LT
(
min
,
max
,
errors
::
InvalidArgument
(
"The uniform_random's min must less then max. But received min = "
"%f great than or equal max = %f."
,
min
,
max
));
PADDLE_ENFORCE_GE
(
diag_num
,
0
,
errors
::
InvalidArgument
(
"The uniform_random's diag_num must greater than or "
"equal 0. But recevied diag_num (%d) < 0."
,
diag_num
));
PADDLE_ENFORCE_GE
(
diag_step
,
0
,
errors
::
InvalidArgument
(
"The uniform_random's diag_step must greater than or "
"equal 0. But recevied diag_step (%d) < 0."
,
diag_step
));
PADDLE_ENFORCE_NE
(
out
,
nullptr
,
phi
::
errors
::
InvalidArgument
(
"uniform_random should have output tensor out."
));
auto
xdim
=
x
.
dims
();
out
->
set_dims
(
xdim
);
out
->
set_dtype
(
x
.
dtype
());
}
void
UniqueConsecutiveInferMeta
(
const
MetaTensor
&
x
,
bool
return_inverse
,
bool
return_counts
,
...
...
paddle/phi/infermeta/unary.h
浏览文件 @
bc106fad
...
...
@@ -492,6 +492,15 @@ void UnfoldInferMeta(const MetaTensor& x,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
UniformRandomInplaceInferMeta
(
const
MetaTensor
&
x
,
float
min
,
float
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
float
diag_val
,
MetaTensor
*
out
);
void
UniqueConsecutiveInferMeta
(
const
MetaTensor
&
x
,
bool
return_inverse
,
bool
return_counts
,
...
...
paddle/phi/kernels/cpu/uniform_random_inplace_grad_kernel.cc
0 → 100644
浏览文件 @
bc106fad
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/uniform_random_inplace_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
UniformRandomInplaceGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
out_grad
,
float
min
,
float
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
float
diag_val
,
DenseTensor
*
x_grad
)
{
if
(
x_grad
)
{
auto
*
data
=
ctx
.
template
Alloc
<
T
>(
x_grad
);
std
::
fill
(
data
,
data
+
x_grad
->
numel
(),
T
(
0
));
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
uniform_random_inplace_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
UniformRandomInplaceGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/cpu/uniform_random_inplace_kernel.cc
0 → 100644
浏览文件 @
bc106fad
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/uniform_random_inplace_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
UniformRandomInplaceKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
float
min
,
float
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
float
diag_val
,
DenseTensor
*
out
)
{
T
*
data
=
ctx
.
template
Alloc
<
T
>(
out
);
int64_t
size
=
out
->
numel
();
std
::
uniform_real_distribution
<
T
>
dist
(
static_cast
<
T
>
(
min
),
static_cast
<
T
>
(
max
));
std
::
shared_ptr
<
std
::
mt19937_64
>
engine
;
if
(
seed
)
{
engine
=
std
::
make_shared
<
std
::
mt19937_64
>
();
engine
->
seed
(
seed
);
}
else
{
engine
=
ctx
.
GetGenerator
()
->
GetCPUEngine
();
}
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
data
[
i
]
=
dist
(
*
engine
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
uniform_random_inplace
,
CPU
,
ALL_LAYOUT
,
phi
::
UniformRandomInplaceKernel
,
float
,
double
)
{}
paddle/
fluid/operators/uniform_random_inplace_op
.cu
→
paddle/
phi/kernels/gpu/uniform_random_inplace_grad_kernel
.cu
浏览文件 @
bc106fad
...
...
@@ -12,46 +12,33 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/uniform_random_op.h"
#include "paddle/phi/kernels/uniform_random_inplace_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/full_kernel.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
GPUUniformRandomInplaceKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
tensor
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
UniformRandom
<
T
>
(
context
,
tensor
);
}
};
template
<
typename
T
>
class
GPUUniformRandomInplaceGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dx
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
dims
=
vectorize
(
dx
->
dims
());
const
auto
&
dev_cxt
=
ctx
.
template
device_context
<
phi
::
GPUContext
>();
float
value
=
static_cast
<
float
>
(
0.0
f
);
phi
::
FullKernel
<
T
>
(
static_cast
<
const
typename
paddle
::
framework
::
ConvertToPhiContext
<
phi
::
GPUContext
>::
TYPE
&>
(
dev_cxt
),
dims
,
value
,
phi
::
DataType
::
UNDEFINED
,
dx
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_CUDA_KERNEL
(
uniform_random_inplace
,
paddle
::
operators
::
GPUUniformRandomInplaceKernel
<
float
>
,
paddle
::
operators
::
GPUUniformRandomInplaceKernel
<
double
>
);
REGISTER_OP_CUDA_KERNEL
(
uniform_random_inplace_grad
,
paddle
::
operators
::
GPUUniformRandomInplaceGradKernel
<
float
>
,
paddle
::
operators
::
GPUUniformRandomInplaceGradKernel
<
double
>
);
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
UniformRandomInplaceGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
out_grad
,
float
min
,
float
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
float
diag_val
,
DenseTensor
*
x_grad
)
{
auto
dims
=
vectorize
(
x_grad
->
dims
());
float
value
=
static_cast
<
float
>
(
0.0
f
);
phi
::
FullKernel
<
T
>
(
ctx
,
dims
,
value
,
phi
::
DataType
::
UNDEFINED
,
x_grad
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
uniform_random_inplace_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
UniformRandomInplaceGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/uniform_random_inplace_kernel.cu
0 → 100644
浏览文件 @
bc106fad
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/uniform_random_inplace_kernel.h"
#include <thrust/random.h>
#include "gflags/gflags.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/distribution_helper.h"
#include "paddle/phi/kernels/funcs/index_impl.cu.h"
namespace
phi
{
template
<
typename
T
>
struct
UniformGenerator
{
T
min_
,
max_
;
unsigned
int
seed_
;
T
diag_val_
;
unsigned
int
diag_num_
;
unsigned
int
diag_step_
;
__host__
__device__
UniformGenerator
(
T
min
,
T
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
T
diag_val
)
:
min_
(
min
),
max_
(
max
),
seed_
(
seed
),
diag_num_
(
diag_num
),
diag_step_
(
diag_step
),
diag_val_
(
diag_val
)
{}
__host__
__device__
T
operator
()(
const
unsigned
int
n
)
const
{
thrust
::
minstd_rand
rng
;
rng
.
seed
(
seed_
);
thrust
::
uniform_real_distribution
<
T
>
dist
(
min_
,
max_
);
rng
.
discard
(
n
);
T
out
=
dist
(
rng
);
unsigned
int
remainder
=
n
%
(
diag_step_
+
1
);
if
(
remainder
==
0
&&
diag_num_
>
n
/
(
diag_step_
+
1
))
{
out
=
diag_val_
;
}
return
out
;
}
};
template
<
typename
T
,
typename
Context
>
void
UniformRandomInplaceKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
float
min
,
float
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
float
diag_val
,
DenseTensor
*
out
)
{
ctx
.
template
Alloc
<
T
>(
out
);
if
(
seed
==
0
)
{
// Use global Generator seed
using
MT
=
typename
kps
::
details
::
MPTypeTrait
<
T
>::
Type
;
funcs
::
uniform_distribution
<
MT
>
dist
;
funcs
::
uniform_real_transform
<
MT
>
trans
(
min
,
max
);
funcs
::
distribution_and_transform
<
T
>
(
ctx
,
out
,
dist
,
trans
);
}
else
{
// Use OP seed
auto
func
=
UniformGenerator
<
T
>
(
min
,
max
,
seed
,
diag_num
,
diag_step
,
diag_val
);
IndexKernel
<
T
,
UniformGenerator
<
T
>>
(
ctx
,
out
,
func
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
uniform_random_inplace
,
GPU
,
ALL_LAYOUT
,
phi
::
UniformRandomInplaceKernel
,
float
,
double
)
{}
paddle/phi/kernels/uniform_random_inplace_grad_kernel.h
0 → 100644
浏览文件 @
bc106fad
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
UniformRandomInplaceGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
out_grad
,
float
min
,
float
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
float
diag_val
,
DenseTensor
*
x_grad
);
}
// namespace phi
paddle/phi/kernels/uniform_random_inplace_kernel.h
0 → 100644
浏览文件 @
bc106fad
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
UniformRandomInplaceKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
float
min
,
float
max
,
int
seed
,
int
diag_num
,
int
diag_step
,
float
diag_val
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/ops/compat/uniform_random_inplace_sig.cc
0 → 100644
浏览文件 @
bc106fad
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
UniformRandomInplaceOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"uniform_random_inplace"
,
{
"X"
},
{
"min"
,
"max"
,
"seed"
,
"diag_num"
,
"diag_step"
,
"diag_val"
},
{
"Out"
});
}
KernelSignature
UniformRandomInplaceGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"uniform_random_inplace_grad"
,
{
"Out@GRAD"
},
{
"min"
,
"max"
,
"seed"
,
"diag_num"
,
"diag_step"
,
"diag_val"
},
{
"X@GRAD"
});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
uniform_random_inplace
,
phi
::
UniformRandomInplaceOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
uniform_random_inplace_grad
,
phi
::
UniformRandomInplaceGradOpArgumentMapping
);
python/paddle/fluid/tests/unittests/test_uniform_random_inplace_op.py
浏览文件 @
bc106fad
...
...
@@ -16,6 +16,7 @@ import unittest
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
from
paddle.fluid.framework
import
_enable_legacy_dygraph
,
_disable_legacy_dygraph
class
TestUniformRandomInplaceOpDtype
(
unittest
.
TestCase
):
...
...
@@ -191,5 +192,34 @@ class TestUniformRandomInplaceGrad(unittest.TestCase):
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
False
})
class
TestUniformRandomInplaceGradOldDygraph
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
shape
=
(
1000
,
784
)
def
test_uniform_random_inplace_grad
(
self
):
_enable_legacy_dygraph
()
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
True
})
def
test_grad
():
tensor_a
=
paddle
.
ones
(
self
.
shape
)
tensor_a
.
stop_gradient
=
False
tensor_b
=
tensor_a
*
0.5
tensor_b
.
uniform_
(
min
=-
2
,
max
=
2
)
loss
=
tensor_b
.
sum
()
loss
.
backward
()
uniform_grad
=
tensor_b
.
grad
.
numpy
()
self
.
assertTrue
((
uniform_grad
==
0
).
all
())
places
=
[
'cpu'
]
if
fluid
.
core
.
is_compiled_with_cuda
():
places
.
append
(
'gpu'
)
for
place
in
places
:
paddle
.
set_device
(
place
)
test_grad
()
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
False
})
_disable_legacy_dygraph
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/tensor/random.py
浏览文件 @
bc106fad
...
...
@@ -620,8 +620,12 @@ def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
# [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
# [ 0.433519, 0.39483607, -0.8660099, 0.83664286]] # random
"""
return
_C_ops
.
uniform_random_inplace_
(
x
,
'min'
,
min
,
'max'
,
max
,
'seed'
,
seed
)
if
in_dygraph_mode
():
return
_C_ops
.
final_state_uniform_random_inplace_
(
x
,
min
,
max
,
seed
,
0
,
0
,
1.0
)
else
:
return
_C_ops
.
uniform_random_inplace_
(
x
,
'min'
,
min
,
'max'
,
max
,
'seed'
,
seed
)
def
randint
(
low
=
0
,
high
=
None
,
shape
=
[
1
],
dtype
=
None
,
name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录