random.py 41.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

Z
zhiboniu 已提交
17 18
from ..framework import core
from ..framework import convert_np_dtype_to_dtype_, dygraph_only
19
from ..framework import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
W
wanghuancoder 已提交
23
from paddle import _C_ops
Z
zhiboniu 已提交
24
from paddle.static import Variable
F
From00 已提交
25
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph, _current_expected_place
S
silingtong123 已提交
26

27 28
__all__ = []

S
silingtong123 已提交
29

L
Leo Chen 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
def bernoulli(x, name=None):
    """

    This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

53
            import paddle
L
Leo Chen 已提交
54

L
Leo Chen 已提交
55 56 57
            paddle.set_device('cpu')  # on CPU device
            paddle.seed(100) 

58
            x = paddle.rand([2,3])
L
Leo Chen 已提交
59 60 61
            print(x)
            # [[0.55355281, 0.20714243, 0.01162981],
            #  [0.51577556, 0.36369765, 0.26091650]]
L
Leo Chen 已提交
62

63
            out = paddle.bernoulli(x)
L
Leo Chen 已提交
64 65 66
            print(out)
            # [[1., 0., 1.],
            #  [0., 1., 0.]]
L
Leo Chen 已提交
67 68 69

    """

H
hong 已提交
70 71 72 73
    if in_dygraph_mode():
        return _C_ops.final_state_bernoulli(x)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
74
        return _C_ops.bernoulli(x)
L
Leo Chen 已提交
75 76 77 78 79 80 81 82

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
83
    out.stop_gradient = True
L
Leo Chen 已提交
84 85 86
    return out


87
def poisson(x, name=None):
88
    r"""
89 90 91 92
    This OP returns a tensor filled with random number from a Poisson Distribution.

    .. math::

93
        out_i \sim Poisson (lambda = x_i)
94 95 96 97 98 99 100 101 102 103 104 105 106 107

    Args:
        x(Tensor):  A tensor with rate parameter of poisson Distribution. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

            import paddle
108
            paddle.set_device('cpu')
109
            paddle.seed(100)
110 111 112

            x = paddle.uniform([2,3], min=1.0, max=5.0)
            out = paddle.poisson(x)
113 114
            #[[2., 5., 0.],
            # [5., 1., 3.]]
115 116 117

    """

Z
zhiboniu 已提交
118
    if paddle.in_dynamic_mode():
119 120 121 122 123 124 125 126 127 128 129
        return _C_ops.poisson(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "poisson")

    helper = LayerHelper("poisson", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='poisson', inputs={'X': x}, outputs={'Out': out}, attrs={})
    return out


P
pangyoki 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
def multinomial(x, num_samples=1, replacement=False, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a Multinomical
    distribution. The input ``x`` is a tensor with probabilities for generating the
    random number. Each element in ``x`` should be larger or equal to 0, but not all
    0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
    is True, a category can be sampled more than once.

    Args:
        x(Tensor):  A tensor with probabilities for generating the random number. The data type
            should be float32, float64.
        num_samples(int, optional): Number of samples, default is 1.
        replacement(bool, optional): Whether it is a replaceable sample, default is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.

    Examples:
        .. code-block:: python

152 153
            import paddle

C
cnn 已提交
154
            paddle.seed(100) # on CPU device
155
            x = paddle.rand([2,4])
156
            print(x)
157 158 159
            # [[0.5535528  0.20714243 0.01162981 0.51577556]
            # [0.36369765 0.2609165  0.18905126 0.5621971 ]]

C
cnn 已提交
160
            paddle.seed(200) # on CPU device
161
            out1 = paddle.multinomial(x, num_samples=5, replacement=True)
162
            print(out1)
163 164 165 166 167 168 169
            # [[3 3 0 0 0]
            # [3 3 3 1 0]]

            # out2 = paddle.multinomial(x, num_samples=5)
            # InvalidArgumentError: When replacement is False, number of samples
            #  should be less than non-zero categories

C
cnn 已提交
170
            paddle.seed(300) # on CPU device
171
            out3 = paddle.multinomial(x, num_samples=3)
172
            print(out3)
173 174
            # [[3 0 1]
            # [3 1 0]]
P
pangyoki 已提交
175 176 177

    """

178 179 180
    assert core.is_compiled_with_rocm() == False, (
        "multinomial op is not supported on ROCM yet.")

H
hong 已提交
181 182 183 184
    if in_dygraph_mode():
        return _C_ops.final_state_multinomial(x, num_samples, replacement)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
185 186
        return _C_ops.multinomial(x, 'num_samples', num_samples, 'replacement',
                                  replacement)
P
pangyoki 已提交
187 188 189 190 191 192 193 194 195 196 197 198

    check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")

    helper = LayerHelper("multinomial", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=convert_np_dtype_to_dtype_('int64'))
    helper.append_op(
        type='multinomial',
        inputs={"X": x},
        outputs={'Out': out},
        attrs={'num_samples': num_samples,
               'replacement': replacement})
199
    out.stop_gradient = True
P
pangyoki 已提交
200 201 202
    return out


203
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
204
    """
205
    Returns a Tensor filled with random values sampled from a Gaussian
206 207 208
    distribution, with ``shape`` and ``dtype``.

    Args:
209
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
210 211 212 213
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
214 215
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
216
            is 1.0.
217 218
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
219 220 221
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
222
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
223 224 225 226 227

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
228 229 230
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

231 232 233 234
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
235 236
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
237 238 239
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

240 241 242 243 244 245 246 247 248
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
        return _C_ops.final_state_gaussian_random(shape,
                                                  float(mean),
                                                  float(std), seed, dtype,
                                                  place)

    if _in_legacy_dygraph():
249
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
250 251 252
        return _C_ops.gaussian_random('shape', shape, 'mean',
                                      float(mean), 'std',
                                      float(std), 'seed', seed, 'dtype', dtype)
253

254
    check_shape(shape, op_type_for_check)
255 256 257 258 259 260 261 262 263 264
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
265
    utils.get_shape_tensor_inputs(
266 267
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)

268
    helper = LayerHelper('gaussian', **locals())
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='gaussian_random',
        inputs=inputs,
        outputs={'Out': out},
        attrs=attrs)
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
286
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
287 288 289 290
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
291
        dtype (str|np.dtype, optional): The data type of the output Tensor.
292 293 294
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
295 296 297 298 299 300 301 302 303 304 305 306 307 308
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
309
            out1 = paddle.standard_normal(shape=[2, 3])
310 311 312 313
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
314 315
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
316
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
317 318 319 320 321 322 323 324
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
325
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
326
            out3 = paddle.standard_normal(shape_tensor)
327 328 329 330
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
331
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
332 333


Z
zhupengyang 已提交
334 335
def randn(shape, dtype=None, name=None):
    """
336
    Returns a Tensor filled with random values sampled from a standard
Z
zhupengyang 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype (str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1: attr shape is a list which doesn't contain Tensor.
            out1 = paddle.randn(shape=[2, 3])
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randn(shape=[dim1, dim2, 2])
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
            shape_tensor = paddle.to_tensor([2, 3])
            out3 = paddle.randn(shape_tensor)
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random
    """
    return standard_normal(shape, dtype, name)
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

430
            mean_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
431 432 433
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

434
            std_tensor = paddle.to_tensor([1.0, 2.0, 3.0])
435 436 437 438
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
Z
zhiboniu 已提交
439
    if not paddle.in_dynamic_mode():
440 441 442 443 444 445 446 447 448 449 450 451 452
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
453
            check_shape(shape, 'normal')
454 455 456 457 458 459 460 461 462 463 464 465 466 467

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
468
        return gaussian(shape=shape, mean=mean, std=std, name=name)
469 470

    out = out * std + mean
Z
zhiboniu 已提交
471
    if not paddle.in_dynamic_mode():
472 473 474 475
        out.stop_grediant = True
    return out


476
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
477 478 479 480 481
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
李灿 已提交
482

Z
zhupengyang 已提交
483
    .. code-block:: text
李灿 已提交
484

P
pangyoki 已提交
485 486 487 488 489 490 491 492 493 494 495
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
496 497 498 499
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
500 501 502 503
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
J
JYChen 已提交
504 505 506
        seed(int, optional): Random seed used for generating samples. If seed is 0,
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
P
pangyoki 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import paddle

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
Z
zhupengyang 已提交
527 528 529 530
            out1 = paddle.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
P
pangyoki 已提交
531 532 533

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
534 535 536 537 538
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.uniform(shape=[dim1, dim2])
            # [[-0.9951253,   0.30757582, 0.9899647 ], # random
            #  [ 0.5864527,   0.6607096,  -0.8886161]] # random
P
pangyoki 已提交
539 540 541

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
542
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
543 544 545
            out3 = paddle.uniform(shape_tensor)
            # [[-0.8517412,  -0.4006908,   0.2551912 ], # random
            #  [ 0.3364414,   0.36278176, -0.16085452]] # random
P
pangyoki 已提交
546
    """
547 548 549 550
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
551 552
                "uniform/rand only supports [float32, float64], but the default dtype is {}".
                format(dtype))
553

P
pangyoki 已提交
554 555 556
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

557 558 559 560 561 562 563 564
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        return _C_ops.final_state_uniform_random(shape, dtype,
                                                 float(min),
                                                 float(max), seed,
                                                 _current_expected_place())

    if _in_legacy_dygraph():
565
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
566 567 568
        return _C_ops.uniform_random('shape', shape, 'min',
                                     float(min), 'max',
                                     float(max), 'seed', seed, 'dtype', dtype)
P
pangyoki 已提交
569

570 571
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
572 573 574

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
575
    utils.get_shape_tensor_inputs(
576
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand')
P
pangyoki 已提交
577

578
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
579 580 581 582
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
583
    out.stop_gradient = True
P
pangyoki 已提交
584 585 586
    return out


J
JYChen 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
@dygraph_only
def uniform_(x, min=-1.0, max=1.0, seed=0, name=None):
    """
    This is the inplace version of OP ``uniform``, which returns a Tensor filled 
    with random values sampled from a uniform distribution. The output Tensor will
    be inplaced with input ``x``. Please refer to :ref:`api_tensor_uniform`.
    
    Args:
        x(Tensor): The input tensor to be filled with random values.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. If seed is 0, 
            it will use the seed of the global default generator (which can be set by paddle.seed). 
            Note that if seed is not 0, this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
        Tensor: The input tensor x filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``).
    Examples:
        .. code-block:: python
            
            import paddle
            # example:
            x = paddle.ones(shape=[3, 4])
            x.uniform_()
            print(x)
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357], # random
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # random
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]] # random
    """
622 623
    return _C_ops.uniform_random_inplace_(x, 'min', min, 'max', max, 'seed',
                                          seed)
J
JYChen 已提交
624 625


626
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
627
    """
628 629 630
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
631 632

    Args:
633
        low (int): The lower bound on the range of random values to generate.
634 635
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
636
        high (int, optional): The upper bound on the range of random values to
637 638
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
639
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
640 641 642 643
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
644
        dtype (str|np.dtype, optional): The data type of the
645 646
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
647
        name (str, optional): The default value is None.  Normally there is no
648 649
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
650 651

    Returns: 
652 653
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
654 655 656

    Examples:
        .. code-block:: python
657

658
            import paddle
659

660 661
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
662
            out1 = paddle.randint(low=-5, high=5, shape=[3])
663 664 665 666
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
667 668 669
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2])
670 671 672 673 674
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
675
            shape_tensor = paddle.to_tensor(3)
Z
zhupengyang 已提交
676
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
677 678 679 680
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
681
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
682 683 684 685 686
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
687
            out5 = paddle.randint(10)
688
            # [7]  # random
S
silingtong123 已提交
689

690 691
    """
    if high is None:
692 693 694 695
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
696 697
        high = low
        low = 0
S
silingtong123 已提交
698 699
    if dtype is None:
        dtype = 'int64'
700 701
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
702

F
From00 已提交
703 704 705 706 707
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
        return _C_ops.final_state_randint(low, high, shape, dtype, place)
    if _in_legacy_dygraph():
708
        shape = utils.convert_shape_to_list(shape)
W
wanghuancoder 已提交
709 710
        return _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                              0, 'dtype', dtype)
S
silingtong123 已提交
711

712
    check_shape(shape, 'randint')
713 714
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
715 716 717 718
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

719 720
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
721
    utils.get_shape_tensor_inputs(
722 723 724 725 726 727
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
728
    out.stop_gradient = True
S
silingtong123 已提交
729
    return out
C
cc 已提交
730 731


732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
def randint_like(x, low=0, high=None, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with the same shape as ``x``.
    (use ``dtype`` if ``dtype`` is not None) 
    If ``high`` is None (the default), the range is [0, ``low``).

    Args:
        x (Tensor): The input tensor which specifies shape. The dtype of ``x`` 
            can be bool, int32, int64, float16, float32, float64.
        low (int): The lower bound on the range of random values to generate.
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
        high (int, optional): The upper bound on the range of random values to
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
        dtype (str|np.dtype, optional): The data type of the
            output tensor. Supported data types: bool, int32, int64, float16, 
            float32, float64. If ``dytpe`` is None, the data type is the
            same as x's data type. Default is None.
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle

            # example 1:
            # dtype is None and the dtype of x is float16
            x = paddle.zeros((1,2)).astype("float16")
            out1 = paddle.randint_like(x, low=-5, high=5)
            print(out1)
            print(out1.dtype)
            # [[0, -3]]  # random
            # paddle.float16

            # example 2:
            # dtype is None and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out2 = paddle.randint_like(x, low=-5, high=5)
            print(out2)
            print(out2.dtype)
            # [[0, -3]]  # random
            # paddle.float32

            # example 3:
            # dtype is None and the dtype of x is float64
            x = paddle.zeros((1,2)).astype("float64")
            out3 = paddle.randint_like(x, low=-5, high=5)
            print(out3)
            print(out3.dtype)
            # [[0, -3]]  # random
            # paddle.float64

            # example 4:
            # dtype is None and the dtype of x is int32
            x = paddle.zeros((1,2)).astype("int32")
            out4 = paddle.randint_like(x, low=-5, high=5)
            print(out4)
            print(out4.dtype)
            # [[0, -3]]  # random
            # paddle.int32

            # example 5:
            # dtype is None and the dtype of x is int64
            x = paddle.zeros((1,2)).astype("int64")
            out5 = paddle.randint_like(x, low=-5, high=5)
            print(out5)
            print(out5.dtype)
            # [[0, -3]]  # random
            # paddle.int64

            # example 6:
            # dtype is float64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out6 = paddle.randint_like(x, low=-5, high=5, dtype="float64")
            print(out6)
            print(out6.dtype)
            # [[0, -1]]  # random
            # paddle.float64

            # example 7:
            # dtype is bool and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out7 = paddle.randint_like(x, low=-5, high=5, dtype="bool")
            print(out7)
            print(out7.dtype)
            # [[0, -1]]  # random
            # paddle.bool

            # example 8:
            # dtype is int32 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out8 = paddle.randint_like(x, low=-5, high=5, dtype="int32")
            print(out8)
            print(out8.dtype)
            # [[0, -1]]  # random
            # paddle.int32

            # example 9:
            # dtype is int64 and the dtype of x is float32
            x = paddle.zeros((1,2)).astype("float32")
            out9 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out9)
            print(out9.dtype)
            # [[0, -1]]  # random
            # paddle.int64

            # example 10:
            # dtype is int64 and the dtype of x is bool
            x = paddle.zeros((1,2)).astype("bool")
            out10 = paddle.randint_like(x, low=-5, high=5, dtype="int64")
            print(out10)
            print(out10.dtype)
            # [[0, -1]]  # random
            # paddle.int64

    """
    if high is None:
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
        high = low
        low = 0
    if dtype is None:
        dtype = x.dtype
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    shape = x.shape

    if low >= high:
        raise ValueError(
            "randint_like's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

Z
zhiboniu 已提交
874
    if paddle.in_dynamic_mode():
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
        shape = utils.convert_shape_to_list(shape)
        out = _C_ops.randint('shape', shape, 'low', low, 'high', high, 'seed',
                             0, 'dtype', core.VarDesc.VarType.INT64)
        out = paddle.cast(out, dtype)
        return out

    check_shape(shape, 'randint_like')
    check_dtype(dtype, 'dtype',
                ['bool', 'float16', 'float32', 'float64', 'int32',
                 'int64'], 'randint_like')

    inputs = dict()
    attrs = {
        'low': low,
        'high': high,
        'seed': 0,
        'dtype': core.VarDesc.VarType.INT64
    }
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint_like')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    out.stop_gradient = True
    out = paddle.cast(out, dtype)
    return out


906
def randperm(n, dtype="int64", name=None):
C
cc 已提交
907
    """
908
    Returns a 1-D Tensor filled with random permutation values from 0
909
    to n-1, with ``dtype``.
C
cc 已提交
910 911

    Args:
912 913
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
914 915
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
916
        name (str, optional): The default value is None. Normally there is no
917 918
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
919 920

    Returns:
921 922
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
923 924 925 926

    Examples:
        .. code-block:: python

927
            import paddle
C
cc 已提交
928

929
            out1 = paddle.randperm(5)
930
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
931

932
            out2 = paddle.randperm(7, 'int32')
933
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
934 935
 
    """
936 937 938
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

Z
zyfncg 已提交
939
    if in_dygraph_mode():
F
From00 已提交
940
        return _C_ops.final_state_randperm(n, dtype, _current_expected_place())
Z
zyfncg 已提交
941
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
942
        return _C_ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
943 944 945

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
946 947
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
948 949

    helper = LayerHelper("randperm", **locals())
950 951 952 953
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
954
    out.stop_gradient = True
C
cc 已提交
955
    return out
X
Xing Wu 已提交
956 957


958
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
959
    """
960 961
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
962 963

    Args:
964
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
965 966 967 968
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
969
        dtype (str|np.dtype, optional): The data type of the output Tensor.
970 971 972
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
973
        name (str, optional): The default value is None. Normally there is no
974 975
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
976

X
Xing Wu 已提交
977
    Returns:
978 979
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
980 981 982 983

    Examples:
        .. code-block:: python

984
            import paddle
985

986
            # example 1: attr shape is a list which doesn't contain Tensor.
987
            out1 = paddle.rand(shape=[2, 3])
988 989 990 991
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
Z
zhupengyang 已提交
992 993
            dim1 = paddle.to_tensor([2], 'int64')
            dim2 = paddle.to_tensor([3], 'int32')
994
            out2 = paddle.rand(shape=[dim1, dim2, 2])
995 996 997 998 999 1000 1001 1002
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
1003
            shape_tensor = paddle.to_tensor([2, 3])
Z
zhupengyang 已提交
1004
            out3 = paddle.rand(shape_tensor)
1005 1006
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
1007 1008

    """
1009
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)
1010 1011 1012


def exponential_(x, lam=1.0, name=None):
1013
    r"""
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    This inplace OP fill input Tensor ``x`` with random number from a Exponential Distribution.

    ``lam`` is :math:`\lambda` parameter of Exponential Distribution. 
    
    .. math::

        f(x) = \lambda e^{-\lambda x}

    Args:
        x(Tensor):  Input tensor. The data type should be float32, float64.
1024
        lam(float, optional): :math:`\lambda` parameter of Exponential Distribution. Default, 1.0.
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: Input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')
            paddle.seed(100)

            x = paddle.empty([2,3])
            x.exponential_()
            # [[0.80643415, 0.23211166, 0.01169797],
            #  [0.72520673, 0.45208144, 0.30234432]]

    """
Z
zhiboniu 已提交
1044
    if paddle.in_dynamic_mode():
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        return _C_ops.exponential_(x, "lambda", lam)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "exponential")

    helper = LayerHelper("exponential", **locals())
    helper.append_op(
        type='exponential',
        inputs={"X": x},
        outputs={'Out': x},
        attrs={"lambda": lam})
    return x