random.py 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define random functions  
S
silingtong123 已提交
16

C
cc 已提交
17
from ..fluid import core
18
from ..fluid.framework import in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
C
cc 已提交
19
from ..fluid.layer_helper import LayerHelper
20
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, check_shape
21 22
from ..fluid.layers import utils
import paddle
S
silingtong123 已提交
23

24 25 26
from ..fluid.io import shuffle  #DEFINE_ALIAS

__all__ = [
L
Leo Chen 已提交
27
    'bernoulli',
28 29
    'standard_normal',
    'normal',
P
pangyoki 已提交
30
    'uniform',
31 32 33 34
    'shuffle',
    'randn',
    'rand',
    'randint',
35
    'randperm',
36
]
S
silingtong123 已提交
37 38


L
Leo Chen 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
def bernoulli(x, name=None):
    """

    This OP returns a Tensor filled with random binary(0 or 1) number from a Bernoulli distribution.
    The input ``x`` is a tensor with probabilities for generating the random binary number.
    Each element in ``x`` should be in [0, 1], and the out is generated by:
    
    .. math::

        out_i ~ Bernoulli (x_i)

    Args:
        x(Tensor):  A tensor with probabilities for generating the random binary number. The data type 
            should be float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns: 
        Tensor: A Tensor filled with random binary number with the same shape and dtype as ``x``.

    Examples:
        .. code-block:: python

        import paddle
        import numpy as np

        paddle.disable_static()

        x = paddle.rand([2, 3])
        print(x.numpy())
        # [[0.11272584 0.3890902  0.7730957 ]
        # [0.10351662 0.8510418  0.63806665]]

        out = paddle.bernoulli(x)
        print(out.numpy())
        # [[0. 0. 1.]
        # [0. 0. 1.]]

    """

    if in_dygraph_mode():
        return core.ops.bernoulli(x)

    check_variable_and_dtype(x, "x", ["float32", "float64"], "bernoulli")

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype)  # maybe set out to int32 ? 
    helper.append_op(
        type='bernoulli', inputs={"X": x}, outputs={'Out': out}, attrs={})
    return out


92
def gaussian(shape, mean=0.0, std=1.0, dtype=None, name=None):
93 94 95 96 97
    """
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.

    Args:
98
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
99 100 101 102
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
103 104
        mean (float|int, optional): Mean of the output tensor, default is 0.0.
        std (float|int, optional): Standard deviation of the output tensor, default
105
            is 1.0.
106 107
        seed (int, optional): Random seed of generator.
        dtype (str|np.dtype, optional): The data type of the output Tensor.
108 109 110
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
111
        name (str, optional): The default value is None. Normally there is no
112 113 114 115 116 117 118
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``. 
    """
119 120 121
    op_type_for_check = 'gaussian/standard_normal/randn/normal'
    seed = 0

122 123 124 125
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
126 127
                "{} only supports [float32, float64], but the default dtype is {}"
                .format(op_type_for_check, dtype))
128 129 130 131
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
132
        shape = utils.convert_shape_to_list(shape)
133 134 135 136 137
        return core.ops.gaussian_random('shape', shape, 'mean',
                                        float(mean), 'std',
                                        float(std), 'seed', seed, 'dtype',
                                        dtype)

138
    check_shape(shape, op_type_for_check)
139 140 141 142 143 144 145 146 147 148
    check_dtype(dtype, 'dtype', ['float32', 'float64'], op_type_for_check)

    inputs = {}
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
        'dtype': dtype,
        'use_mkldnn': False
    }
149
    utils.get_shape_tensor_inputs(
150 151
        inputs=inputs, attrs=attrs, shape=shape, op_type=op_type_for_check)

152
    helper = LayerHelper('gaussian', **locals())
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='gaussian_random',
        inputs=inputs,
        outputs={'Out': out},
        attrs=attrs)
    out.stop_gradient = True
    return out


def standard_normal(shape, dtype=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a standard
    normal distribution with mean 0 and standard deviation 1, with ``shape``
    and ``dtype``.

    Args:
170
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
171 172 173 174
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
175
        dtype (str|np.dtype, optional): The data type of the output Tensor.
176 177 178
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a standard
        normal distribution with mean 0 and standard deviation 1, with
        ``shape`` and ``dtype``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            # example 1: attr shape is a list which doesn't contain Tensor.
196
            out1 = paddle.standard_normal(shape=[2, 3])
197 198 199 200
            # [[-2.923464  ,  0.11934398, -0.51249987],  # random
            #  [ 0.39632758,  0.08177969,  0.2692008 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
201 202 203
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.standard_normal(shape=[dim1, dim2, 2])
204 205 206 207 208 209 210 211
            # [[[-2.8852394 , -0.25898588],  # random
            #   [-0.47420555,  0.17683524],  # random
            #   [-0.7989969 ,  0.00754541]],  # random
            #  [[ 0.85201347,  0.32320443],  # random
            #   [ 1.1399018 ,  0.48336947],  # random
            #   [ 0.8086993 ,  0.6868893 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
212 213
            shape_tensor = paddle.to_tensor(np.array([2, 3]))
            out3 = paddle.standard_normal(shape_tensor)
214 215 216 217
            # [[-2.878077 ,  0.17099959,  0.05111201]  # random
            #  [-0.3761474, -1.044801  ,  1.1870178 ]]  # random

    """
218
    return gaussian(shape=shape, mean=0.0, std=1.0, dtype=dtype, name=name)
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291


randn = standard_normal


def normal(mean=0.0, std=1.0, shape=None, name=None):
    """
    This OP returns a Tensor filled with random values sampled from a normal
    distribution with ``mean`` and ``std`` (standard deviation) .

    If ``mean`` is a Tensor, the output Tensor has the same shape and data type as ``mean``.
    If ``mean`` is not a Tensor and ``std`` is a Tensor, the output Tensor has the same shape and data type as ``std``.
    If ``mean`` and ``std`` are not a Tensor, the output Tensor has the same shape as ``shape``, with data type float32.

    If ``mean`` and ``std`` are Tensor, the num of elements of ``mean`` and ``std`` should be the same.

    Args:
        mean (float|Tensor, optional): The mean of the output Tensor's normal distribution.
            If ``mean`` is float, all elements of the output Tensor shared the same mean.
            If ``mean`` is a Tensor(data type supports float32, float64), it has per-element means.
            Default is 0.0
        std (float|Tensor, optional): The  standard deviation of the output Tensor's normal distribution.
            If ``std`` is float, all elements of the output Tensor shared the same standard deviation.
            If ``std`` is a Tensor(data type supports float32, float64), it has per-element standard deviations.
            Defaule is 1.0
        shape (list|tuple|Tensor, optional): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). If ``mean`` or ``std`` is a Tensor, the shape of the output
            Tensor is the same as ``mean`` or ``std`` , attr ``shape`` is ignored.
            Default is None
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor filled with random values sampled from a normal distribution with ``mean`` and ``std`` .

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            paddle.disable_static()

            out1 = paddle.normal(shape=[2, 3])
            # [[ 0.17501129  0.32364586  1.561118  ]  # random
            #  [-1.7232178   1.1545963  -0.76156676]]  # random

            mean_tensor = paddle.to_tensor(np.array([1.0, 2.0, 3.0]))
            out2 = paddle.normal(mean=mean_tensor)
            # [ 0.18644847 -1.19434458  3.93694787]  # random

            std_tensor = paddle.to_tensor(np.array([1.0, 2.0, 3.0]))
            out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
            # [1.00780561 3.78457445 5.81058198]  # random

    """
    if not in_dygraph_mode():
        check_type(mean, 'mean', (int, float, Variable), 'normal')
        check_type(std, 'std', (int, float, Variable), 'normal')
        if isinstance(mean, Variable):
            check_dtype(
                mean.dtype, 'mean', ['float32', 'float64'], 'normal',
                "If mean is Tensor, it's data type only support float32, float64."
            )
        if isinstance(std, Variable):
            check_dtype(
                std.dtype, 'std', ['float32', 'float64'], 'normal',
                "If std is Tensor, it's data type only support float32, float64."
            )
        if shape is not None:
292
            check_shape(shape, 'normal')
293 294 295 296 297 298 299 300 301 302 303 304 305 306

    if isinstance(mean, Variable):
        if isinstance(std, Variable):
            if std.dtype != mean.dtype:
                std = paddle.cast(std, mean.dtype)
            mean_shape = paddle.shape(mean)
            std = paddle.reshape(std, mean_shape)
        else:
            std = float(std)
        out = standard_normal(paddle.shape(mean), mean.dtype, name)
    elif isinstance(std, Variable):
        mean = float(mean)
        out = standard_normal(paddle.shape(std), std.dtype, name)
    else:
307
        return gaussian(shape=shape, mean=mean, std=std, name=name)
308 309 310 311 312 313 314

    out = out * std + mean
    if not in_dygraph_mode():
        out.stop_grediant = True
    return out


315
def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
P
pangyoki 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    """
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Examples:
    ::
        Input:
          shape = [1, 2]
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
333 334 335 336
        dtype(str|np.dtype, optional): The data type of the output Tensor.
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
P
pangyoki 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
            time. Default is 0.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.

    Raises:
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.

    Examples:
        .. code-block:: python
            
            import numpy as np
            import paddle

            paddle.disable_static()

            # example 1:
            # attr shape is a list which doesn't contain Tensor.
            result_1 = paddle.tensor.random.uniform(shape=[3, 4])
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]

            # example 2:
            # attr shape is a list which contains Tensor.
            dim_1 = paddle.fill_constant([1], "int64", 2)
            dim_2 = paddle.fill_constant([1], "int32", 3)
            result_2 = paddle.tensor.random.uniform(shape=[dim_1, dim_2])
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]

            # example 3:
            # attr shape is a Tensor, the data type must be int64 or int32.
            shape = np.array([2, 3])
            shape_tensor = paddle.to_tensor(shape)
            result_3 = paddle.tensor.random.uniform(shape_tensor)
            # if shape_tensor's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]


    """
392 393 394 395
    if dtype is None:
        dtype = paddle.framework.get_default_dtype()
        if dtype not in ['float32', 'float64']:
            raise TypeError(
396 397
                "uniform/rand only supports [float32, float64], but the default dtype is {}".
                format(dtype))
398

P
pangyoki 已提交
399 400 401 402
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
403
        shape = utils.convert_shape_to_list(shape)
P
pangyoki 已提交
404 405 406 407
        return core.ops.uniform_random('shape', shape, 'min',
                                       float(min), 'max',
                                       float(max), 'seed', seed, 'dtype', dtype)

408 409
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform/rand')
    check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform/rand')
P
pangyoki 已提交
410 411 412

    inputs = dict()
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
413
    utils.get_shape_tensor_inputs(
414
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform/rand')
P
pangyoki 已提交
415

416
    helper = LayerHelper("uniform", **locals())
P
pangyoki 已提交
417 418 419 420 421 422 423
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})
    return out


424
def randint(low=0, high=None, shape=[1], dtype=None, name=None):
S
silingtong123 已提交
425
    """
426 427 428
    This OP returns a Tensor filled with random integers from a discrete uniform
    distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
    If ``high`` is None (the default), the range is [0, ``low``).
S
silingtong123 已提交
429 430

    Args:
431
        low (int): The lower bound on the range of random values to generate.
432 433
            The ``low`` is included in the range. If ``high`` is None, the
            range is [0, ``low``). Default is 0.
434
        high (int, optional): The upper bound on the range of random values to
435 436
            generate, the ``high`` is excluded in the range. Default is None
            (see above for behavior if high = None). Default is None.
437
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
438 439 440 441
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64). Default is [1].
442
        dtype (str|np.dtype, optional): The data type of the
443 444
            output tensor. Supported data types: int32, int64. If ``dytpe``
            is None, the data type is int64. Default is None.
445
        name (str, optional): The default value is None.  Normally there is no
446 447
            need for user to set this property.  For more information, please
            refer to :ref:`api_guide_Name`.
S
silingtong123 已提交
448 449

    Returns: 
450 451
        Tensor: A Tensor filled with random integers from a discrete uniform
        distribution in the range [``low``, ``high``), with ``shape`` and ``dtype``.
S
silingtong123 已提交
452 453 454

    Examples:
        .. code-block:: python
455

456 457
            import paddle
            import numpy as np
458

459
            paddle.disable_static()
460

461 462
            # example 1:
            # attr shape is a list which doesn't contain Tensor.
463
            out1 = paddle.randint(low=-5, high=5, shape=[3])
464 465 466 467
            # [0, -3, 2]  # random

            # example 2:
            # attr shape is a list which contains Tensor.
468 469 470
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.randint(low=-5, high=5, shape=[dim1, dim2], dtype="int32")
471 472 473 474 475
            # [[0, -1, -3],  # random
            #  [4, -2,  0]]  # random

            # example 3:
            # attr shape is a Tensor
476 477
            shape_tensor = paddle.to_tensor(np.array([3]))
            out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
478 479 480 481
            # [-2, 2, 3]  # random

            # example 4:
            # data type is int32
482
            out4 = paddle.randint(low=-5, high=5, shape=[3], dtype='int32')
483 484 485 486 487
            # [-5, 4, -4]  # random

            # example 5:
            # Input only one parameter
            # low=0, high=10, shape=[1], dtype='int64'
488
            out5 = paddle.randint(10)
489
            # [7]  # random
S
silingtong123 已提交
490

491 492
    """
    if high is None:
493 494 495 496
        if low <= 0:
            raise ValueError(
                "If high is None, low must be greater than 0, but received low = {0}.".
                format(low))
497 498
        high = low
        low = 0
S
silingtong123 已提交
499 500
    if dtype is None:
        dtype = 'int64'
501 502
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
S
silingtong123 已提交
503 504

    if in_dygraph_mode():
505
        shape = utils.convert_shape_to_list(shape)
506 507
        return core.ops.randint('shape', shape, 'low', low, 'high', high,
                                'seed', 0, 'dtype', dtype)
S
silingtong123 已提交
508

509
    check_shape(shape, 'randint')
510 511
    check_dtype(dtype, 'dtype', ['int32', 'int64'], 'randint')
    if low >= high:
S
silingtong123 已提交
512 513 514 515
        raise ValueError(
            "randint's low must less then high, but received low = {0}, "
            "high = {1}".format(low, high))

516 517
    inputs = dict()
    attrs = {'low': low, 'high': high, 'seed': 0, 'dtype': dtype}
518
    utils.get_shape_tensor_inputs(
519 520 521 522 523 524
        inputs=inputs, attrs=attrs, shape=shape, op_type='randint')

    helper = LayerHelper("randint", **locals())
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='randint', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
silingtong123 已提交
525
    return out
C
cc 已提交
526 527


528
def randperm(n, dtype="int64", name=None):
C
cc 已提交
529
    """
530 531
    This OP returns a 1-D Tensor filled with random permutation values from 0
    to n-1, with ``dtype``.
C
cc 已提交
532 533

    Args:
534 535
        n (int): The upper bound (exclusive), and it should be greater than 0.
        dtype (str|np.dtype, optional): The data type of
536 537
            the output Tensor. Supported data types: int32, int64, float32,
            float64. Default is int64.
538
        name (str, optional): The default value is None. Normally there is no
539 540
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
C
cc 已提交
541 542

    Returns:
543 544
        Tensor: A 1-D Tensor filled with random permutation values from 0
        to n-1, with ``dtype``.
C
cc 已提交
545 546 547 548

    Examples:
        .. code-block:: python

549
            import paddle
C
cc 已提交
550

551
            paddle.disable_static()
C
cc 已提交
552

553
            out1 = paddle.randperm(5)
554
            # [4, 1, 2, 3, 0]  # random
C
cc 已提交
555

556
            out2 = paddle.randperm(7, 'int32')
557
            # [1, 6, 2, 0, 4, 3, 5]  # random
C
cc 已提交
558 559
 
    """
560 561 562 563 564
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
        return core.ops.randperm('n', n, 'seed', 0, 'dtype', dtype)
C
cc 已提交
565 566 567

    if n < 1:
        raise ValueError("The input n should be greater than 0 in randperm op.")
568 569
    check_dtype(dtype, 'dtype', ['int64', 'int32', 'float32', 'float64'],
                'randperm')
C
cc 已提交
570 571

    helper = LayerHelper("randperm", **locals())
572 573 574 575
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {'n': n, 'dtype': dtype, 'seed': 0}
    helper.append_op(
        type='randperm', inputs={}, outputs={'Out': out}, attrs=attrs)
576
    out.stop_gradient = True
C
cc 已提交
577
    return out
X
Xing Wu 已提交
578 579


580
def rand(shape, dtype=None, name=None):
X
Xing Wu 已提交
581
    """
582 583
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
584 585

    Args:
586
        shape (list|tuple|Tensor): The shape of the output Tensor. If ``shape``
587 588 589 590
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
591
        dtype (str|np.dtype, optional): The data type of the output Tensor.
592 593 594
            Supported data types: float32, float64.
            Default is None, use global default dtype (see ``get_default_dtype``
            for details).
595
        name (str, optional): The default value is None. Normally there is no
596 597
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
598

X
Xing Wu 已提交
599
    Returns:
600 601
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [0, 1), with ``shape`` and ``dtype``.
X
Xing Wu 已提交
602 603 604 605

    Examples:
        .. code-block:: python

606 607
            import paddle
            import numpy as np
608

609 610
            paddle.disable_static()
            # example 1: attr shape is a list which doesn't contain Tensor.
611
            out1 = paddle.rand(shape=[2, 3])
612 613 614 615
            # [[0.451152  , 0.55825245, 0.403311  ],  # random
            #  [0.22550228, 0.22106001, 0.7877319 ]]  # random

            # example 2: attr shape is a list which contains Tensor.
616 617 618
            dim1 = paddle.full([1], 2, "int64")
            dim2 = paddle.full([1], 3, "int32")
            out2 = paddle.rand(shape=[dim1, dim2, 2])
619 620 621 622 623 624 625 626
            # [[[0.8879919 , 0.25788337],  # random
            #   [0.28826773, 0.9712097 ],  # random
            #   [0.26438272, 0.01796806]],  # random
            #  [[0.33633623, 0.28654453],  # random
            #   [0.79109055, 0.7305809 ],  # random
            #   [0.870881  , 0.2984597 ]]]  # random

            # example 3: attr shape is a Tensor, the data type must be int64 or int32.
627 628
            shape_tensor = paddle.to_tensor(np.array([2, 3]))
            out2 = paddle.rand(shape_tensor)
629 630
            # [[0.22920267, 0.841956  , 0.05981819],  # random
            #  [0.4836288 , 0.24573246, 0.7516129 ]]  # random
X
Xing Wu 已提交
631 632

    """
633
    return uniform(shape, dtype, min=0.0, max=1.0, name=name)