device_context.cc 19.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
15
#include <thread>  //NOLINT
Y
Yu Yang 已提交
16
#include <unordered_set>
17 18
#include <vector>

Y
Yi Wang 已提交
19
#include "paddle/fluid/memory/memory.h"
20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
22
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/platform/cuda_device_guard.h"
24
#endif
25

26
#include "glog/logging.h"
27
#include "unsupported/Eigen/CXX11/ThreadPool"
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
#ifdef PADDLE_WITH_CUDA
  if (size == 0 || !platform::is_gpu_place(place)) {
    return Alloc(place, size);
  }
  auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto& desired_dev_ctx =
      static_cast<const platform::CUDADeviceContext&>(dev_ctx);
  if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
    return Alloc(place, size);
  } else {
    return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
        desired_dev_ctx, size);
  }
#else
  return Alloc(place, size);
#endif
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
56 57 58
namespace paddle {
namespace platform {

D
dzhwinter 已提交
59 60
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
61
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
62 63
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
64 65
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
66 67
        "with WITH_GPU or WITH_XPU option or check that your train process "
        "hold the "
G
GaoWei8 已提交
68 69
        "correct gpu_id if you use Executor.",
        place));
D
dzhwinter 已提交
70
  }
71
  return it->second.get().get();
D
dzhwinter 已提交
72 73
}

74 75 76 77 78 79 80 81 82
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
83
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
84
                   }));
C
chengduozh 已提交
85 86
}

D
dzhwinter 已提交
87 88
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
89 90 91 92 93
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
94
  std::set<Place> set;
Y
Yu Yang 已提交
95 96 97 98 99
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
100
#ifdef PADDLE_WITH_MKLDNN
101
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
102
#else
103
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
104
#endif
Y
Yu Yang 已提交
105
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
106
#ifdef PADDLE_WITH_CUDA
107
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
108
#else
G
GaoWei8 已提交
109 110 111
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
112 113 114
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
115 116
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
117
#else
G
GaoWei8 已提交
118
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
119 120
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
121 122 123 124 125 126 127 128
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
D
dzhwinter 已提交
129 130 131 132 133
#endif
    }
  }
}

134 135
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
136
  InitPoolDevice();
137 138
}

D
dzhwinter 已提交
139
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
140
  eigen_device_.reset(new Eigen::DefaultDevice());
141 142 143 144 145 146
  InitPoolDevice();
}

void CPUDeviceContext::InitPoolDevice() {
  using EigenEnv = Eigen::StlThreadEnvironment;
  using EigenThreadPool = Eigen::ThreadPoolTempl<EigenEnv>;
147 148
  // int num_threads = std::thread::hardware_concurrency();
  int num_threads = 1;
149 150 151
  eigen_threadpool_.reset(new EigenThreadPool(num_threads));
  eigen_pool_device_.reset(
      new Eigen::ThreadPoolDevice(eigen_threadpool_.get(), num_threads));
152 153 154 155 156 157
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

158 159 160 161
Eigen::ThreadPoolDevice* CPUDeviceContext::eigen_pool_device() const {
  return eigen_pool_device_.get();
}

D
dzhwinter 已提交
162
Place CPUDeviceContext::GetPlace() const { return place_; }
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

XPUDeviceContext::~XPUDeviceContext() { xpu::destroy_context(context_); }

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  context_ = xpu::create_context();
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  xpu_wait();
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

207
#ifdef PADDLE_WITH_CUDA
208

Q
init  
qijun 已提交
209 210 211 212 213 214 215
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
216
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
217 218 219 220 221 222 223 224 225 226 227 228
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
229 230 231
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
232 233 234
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
235
    void* retv = buf->ptr();
S
sneaxiy 已提交
236 237 238 239
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
240
    return retv;
Q
init  
qijun 已提交
241 242
  }

S
sneaxiy 已提交
243 244 245 246 247 248
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
249 250 251

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
252 253 254 255
// windows use an old version of eigen that uses kCudaScratchSize,
// once windows updates eigen to a recent version, the following code
// can use kGpuScratchSize uniformly
#ifdef _WIN32
Q
init  
qijun 已提交
256
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
Z
Zhang Ting 已提交
257 258 259
#else
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
#endif
Q
init  
qijun 已提交
260 261 262 263 264 265
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
266
#ifdef _WIN32
Q
init  
qijun 已提交
267 268
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
Z
Zhang Ting 已提交
269 270 271
#else
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
#endif
Q
init  
qijun 已提交
272
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
273
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
274 275 276 277 278 279
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
280
  CUDAPlace place_;
Q
init  
qijun 已提交
281 282
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
283
  mutable void* scratch_;
Q
init  
qijun 已提交
284
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
285
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
286
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
287 288
};

289 290 291 292 293 294 295 296 297
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

298 299 300 301 302 303 304 305 306 307 308 309
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
310
                         const stream::Priority& priority) {
311 312 313 314 315 316
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
G
Guo Sheng 已提交
317
  InitCuSolverContext();
318 319 320 321 322 323
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
G
Guo Sheng 已提交
324
  DestoryCuSolverContext();
325 326
}

327
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
328
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
329 330 331
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
332
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
333
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
334

C
chengduo 已提交
335 336 337
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

338 339
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
340
                          << ", Driver API Version: " << driver_version_ / 1000
341
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
342 343 344
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
345 346 347
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
348
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
349 350 351

  {
    // Check CUDA/CUDNN version compatiblity
352 353 354 355
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
356 357 358 359 360 361 362 363 364 365 366 367
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
368
  default_ctx_.reset(new CUDAContext(place_));
369 370 371 372
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
373 374 375 376 377
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
378 379
}

L
liaogang 已提交
380
Place CUDADeviceContext::GetPlace() const { return place_; }
381

382
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
383

K
Kexin Zhao 已提交
384
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
385
  return compute_capability_;
K
Kexin Zhao 已提交
386 387
}

388
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
389
  return multi_process_ * max_threads_per_mp_;
390 391
}

392 393 394 395 396 397
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

398
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
399
  return context()->EigenDevice().get();
400 401
}

402
bool CUDADeviceContext::tensor_core_available() const {
403
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
404 405
}

406 407 408 409
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

410 411 412
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return context()->CudnnHandle();
}
413

S
sneaxiy 已提交
414
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
415
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
416
}
417

G
Guo Sheng 已提交
418 419 420 421
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}

422 423 424
cudaStream_t CUDADeviceContext::stream() const {
  return context()->RawStream();
}
Q
qijun 已提交
425

C
chengduoZH 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
440
#endif
Q
qijun 已提交
441

T
tensor-tang 已提交
442 443
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
A
Adam 已提交
444 445 446
    : CPUDeviceContext(place),
      engine_(mkldnn::engine::kind::cpu, 0),
      p_blobmap_() {
447 448
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
449 450
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
MKLDNNDeviceContextThreadLocals::Body::Body() {
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
468 469
  cur_input_shape_str = input_shape_str;
}
470 471
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
472 473
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
474

475 476
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
477 478 479
  cur_paddle_data_layout = dl;
}

480 481
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
482 483 484
  return cur_paddle_data_layout;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
500
}
501

502
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
503
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
504
  BlobMap* pMap = p_blobmap_.get();
505
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
506
  if (map_it == pMap->end()) {
507 508 509
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
510 511 512 513
  }
  return map_it->second->size();
}

514
void MKLDNNDeviceContext::SetBlob(const std::string& name,
515
                                  BlobPtr_t<void> data) const {
516
  BlobMap* pMap = p_blobmap_.get();
517 518
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
519

520
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
521

522
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
523

524 525
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
526 527 528

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
529
    sBlob = std::make_shared<ShapeBlob>();
530 531
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
532
  } else {
533
    sBlob = map_it->second;
534
  }
T
tensor-tang 已提交
535

536
  // Find KeyBlob for current input shape
537
  auto key_it = sBlob->find(tls().cur_input_shape_str);
538

539
  if (key_it == sBlob->end()) {
540 541
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
542 543
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
544
        sBlob->size() &&
545
        (sBlob->size() >=
546
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
547 548 549 550
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
551 552
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
553
  } else {
554
    pBlob = key_it->second;
555 556
  }

557 558 559 560 561 562 563
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
564
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
565
  // lock will be automatically released when out of scope
566
  return;
T
tensor-tang 已提交
567 568
}

569
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
570
    const std::string& name) const {
571
  BlobMap* pMap = p_blobmap_.get();
572 573
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
574

575
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
576

577
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
578

579 580
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
581
  if (map_it == pMap->end()) {
582
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
583 584 585 586 587
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
588
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
589
  if (sBlob_it == sBlob->end()) {
590
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
591 592 593 594
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
595 596 597 598

  // Find Blob via name
  auto key_it = pBlob->find(name);

599
  if (key_it == pBlob->end()) {
600
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
601 602
    return nullptr;
  }
603

604
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
605 606
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
607 608 609 610
}

#endif

Q
qijun 已提交
611
}  // namespace platform
Q
qijun 已提交
612
}  // namespace paddle