device_context.cc 17.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/platform/cuda_device_guard.h"
22
#endif
23

24 25
#include "glog/logging.h"

Q
qijun 已提交
26 27 28
namespace paddle {
namespace platform {

D
dzhwinter 已提交
29 30
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
31
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
32 33 34
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
35 36 37 38
        "Place %s is not supported, Please check that your paddle compiles "
        "with WITH_GPU "
        "option or check that your train process hold the correct gpu_id if "
        "you use Executor",
M
minqiyang 已提交
39
        place);
D
dzhwinter 已提交
40
  }
41
  return it->second.get().get();
D
dzhwinter 已提交
42 43
}

44 45 46 47 48 49 50 51 52 53 54
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
55 56
}

D
dzhwinter 已提交
57 58 59
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
60
  std::set<Place> set;
Y
Yu Yang 已提交
61 62 63 64 65
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
66
#ifdef PADDLE_WITH_MKLDNN
67
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
68
#else
69
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
70
#endif
Y
Yu Yang 已提交
71
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
72
#ifdef PADDLE_WITH_CUDA
73
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
74 75
#else
      PADDLE_THROW(
D
dzhwinter 已提交
76
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
77
          "option");
C
chengduoZH 已提交
78 79 80
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
81 82
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
83 84 85 86
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
87 88 89 90 91
#endif
    }
  }
}

92 93 94 95 96 97 98
DeviceTemporaryAllocator* DeviceTemporaryAllocator::allocators = nullptr;

#ifdef PADDLE_WITH_CUDA
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place, const cudaStream_t& stream) {
  PADDLE_ENFORCE(platform::is_gpu_place(place));
  auto place_stream = std::make_pair(place, stream);
99 100 101 102 103 104 105 106 107 108 109 110
  std::unique_lock<std::mutex> lock(mtx_);
  auto it = device_allocator_.find(place_stream);
  if (it == device_allocator_.end()) {
    auto tmp_allocator = new TemporaryAllocator(place);
    tmp_allocator->SetCallback([stream]() {
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      PADDLE_ENFORCE(cudaGetLastError());
    });
    device_allocator_[place_stream].reset(tmp_allocator);
    return *tmp_allocator;
  } else {
    return *it->second;
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  }
}

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CUDADeviceContext& dev_ctx) {
  return Get(dev_ctx.GetPlace(), dev_ctx.stream());
}
#endif

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CPUDeviceContext& dev_ctx) {
  return cpu_allocator_;
}

platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place) {
  PADDLE_ENFORCE(platform::is_cpu_place(place), "You should pass CPUPlace");
  return cpu_allocator_;
}

133 134 135 136
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
137
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
138 139 140 141 142 143 144
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
145
Place CPUDeviceContext::GetPlace() const { return place_; }
146

147
#ifdef PADDLE_WITH_CUDA
148

Q
init  
qijun 已提交
149 150 151 152 153 154 155
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
156
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
157 158 159 160 161 162 163 164 165 166 167 168
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
169 170 171
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
172
    auto buf = paddle::memory::Alloc(place_, num_bytes);
173
    void* retv = buf->ptr();
S
sneaxiy 已提交
174 175 176 177
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
178
    return retv;
Q
init  
qijun 已提交
179 180
  }

S
sneaxiy 已提交
181 182 183 184 185 186
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
207
  CUDAPlace place_;
Q
init  
qijun 已提交
208 209
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
210
  mutable void* scratch_;
Q
init  
qijun 已提交
211
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
212
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
213
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
214 215
};

S
sneaxiy 已提交
216
CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
Y
Yu Yang 已提交
217
    : workspace_(nullptr), stream_(stream), place_(place) {
N
nhzlx 已提交
218
  PADDLE_ENFORCE(cudaSetDevice(place_.device));
S
sneaxiy 已提交
219 220 221
  PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
  PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
}
222

S
sneaxiy 已提交
223 224
CudnnHolder::~CudnnHolder() {
  PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
S
sneaxiy 已提交
225
}
226

S
sneaxiy 已提交
227
void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) {
Y
Yu Yang 已提交
228
  if (required_workspace_len <= WorkspaceSize()) {
S
sneaxiy 已提交
229
    return;
Y
Yu Yang 已提交
230
  }
S
sneaxiy 已提交
231 232 233
  if (workspace_ != nullptr) {
    // Maybe someone is using the current workspace
    PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
Y
Yu Yang 已提交
234
    workspace_.reset();
235
  }
236
  workspace_ = paddle::memory::Alloc(place_, required_workspace_len);
S
sneaxiy 已提交
237
}
238 239 240

CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
Y
Yu Yang 已提交
241
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
242 243 244
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
245 246 247
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
248
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
249 250 251 252 253 254 255 256 257
  cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH));

  if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
    cublas_tensor_core_handle_.reset(
        new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH));
#endif
  }

C
chengduo 已提交
258 259 260
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

261 262
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
263
                          << ", Driver API Version: " << driver_version_ / 1000
264
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
265 266 267
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
268 269 270
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
271
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
272 273 274

  {
    // Check CUDA/CUDNN version compatiblity
275 276 277 278
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }

    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = cudnn_dso_ver / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
S
sneaxiy 已提交
294
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
S
sneaxiy 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
    }
  }

S
sneaxiy 已提交
308
  callback_manager_.reset(new StreamCallbackManager(stream_));
309 310 311 312
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
313
  Wait();
S
sneaxiy 已提交
314
  WaitStreamCallback();
315 316
  cublas_handle_.reset();
  cublas_tensor_core_handle_.reset();
317 318
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
319
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
Q
qingqing01 已提交
320
#if !defined(_WIN32)
321 322 323
  if (nccl_comm_) {
    PADDLE_ENFORCE(dynload::ncclCommDestroy(nccl_comm_));
  }
Q
qingqing01 已提交
324
#endif
325 326
}

L
liaogang 已提交
327
Place CUDADeviceContext::GetPlace() const { return place_; }
328

L
liaogang 已提交
329
void CUDADeviceContext::Wait() const {
330 331
  auto& allocator =
      DeviceTemporaryAllocator::Instance().Get<CUDADeviceContext>(*this);
332
  allocator.Release([this]() {
333 334 335 336 337 338 339 340 341 342 343
    cudaError_t e_sync = cudaStreamSynchronize(stream_);
    if (e_sync != 0) {
      LOG(FATAL) << "cudaStreamSynchronize " << cudaGetErrorString(e_sync)
                 << " errno:" << e_sync;
    }

    cudaError_t e_get = cudaGetLastError();
    if (e_get != 0) {
      LOG(FATAL) << "cudaGetLastError  " << cudaGetErrorString(e_get)
                 << " errno:" << e_get;
    }
344
  });
345 346
}

K
Kexin Zhao 已提交
347
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
348
  return compute_capability_;
K
Kexin Zhao 已提交
349 350
}

351
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
352
  return multi_process_ * max_threads_per_mp_;
353 354
}

355 356 357 358
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

359 360
bool CUDADeviceContext::tensor_core_available() const {
  return cublas_tensor_core_handle_ != nullptr;
S
sneaxiy 已提交
361 362
}

363 364 365 366 367 368 369 370 371
CudnnHolder* CUDADeviceContext::cudnn_holder() const {
  std::call_once(init_cudnn_, [&]() {
    if (dynload::HasCUDNN()) {
      cudnn_holder_.reset(new CudnnHolder(&stream_, place_));
    }
  });
  return cudnn_holder_.get();
}

372
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
373
  return cudnn_holder()->cudnn_handle();
374 375
}

S
sneaxiy 已提交
376
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
377
  return CudnnWorkspaceHandle(cudnn_holder());
378
}
379

380
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
381

C
chengduoZH 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
396
#endif
Q
qijun 已提交
397

T
tensor-tang 已提交
398 399
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
400 401 402
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
403 404
}

S
Sylwester Fraczek 已提交
405
namespace {
406 407
// Current mkldnn session id.
thread_local size_t cur_mkldnn_session_id = kMKLDNNSessionID_Default;
408 409 410 411
// Current data input shape string.
// - For fixed-shape, it's a null string in default.
// - For dynamic-shape, it's user specific.
thread_local std::string cur_input_shape_str = "";
412 413 414
// the cache capacity of different input shapes for MKLDNN.
// Default 1 means fixed input shape, not dynamic shape.
thread_local int cur_input_shape_cache_capacity = 1;
415
}  // namespace
S
Sylwester Fraczek 已提交
416

417 418
void set_cur_mkldnn_session_id(size_t sid) { cur_mkldnn_session_id = sid; }
size_t get_cur_mkldnn_session_id(void) { return cur_mkldnn_session_id; }
419 420 421
void set_cur_input_shape_str(std::string input_shape_str) {
  cur_input_shape_str = input_shape_str;
}
422 423 424
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity) {
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
425

426 427
void MKLDNNDeviceContext::ResetBlobMap() const { p_blobmap_->clear(); }

428 429 430 431 432 433 434 435 436 437 438
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
  std::lock_guard<std::mutex> lock(*p_mutex_);
  BlobMap* pMap = p_blobmap_.get();
  auto map_it = pMap->find(cur_mkldnn_session_id);
  if (map_it == pMap->end()) {
    LOG(FATAL) << "MKLDNNDeviceContext don't find cur_mkldnn_session_id : "
               << cur_mkldnn_session_id;
  }
  return map_it->second->size();
}

439 440
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
441
  BlobMap* pMap = p_blobmap_.get();
442
  std::shared_ptr<ShapeBlob> sBlob = nullptr;
443 444
  std::shared_ptr<KeyBlob> pBlob = nullptr;

445
  int sid = platform::get_cur_mkldnn_session_id();
T
tensor-tang 已提交
446

447
  std::lock_guard<std::mutex> lock(*p_mutex_);
T
tensor-tang 已提交
448

449 450
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
451 452 453

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
454
    sBlob = std::shared_ptr<ShapeBlob>(new ShapeBlob());
455 456
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
457
  } else {
458
    sBlob = map_it->second;
459
  }
T
tensor-tang 已提交
460

461 462
  // Find KeyBlob for current input shape
  auto key_it = sBlob->find(cur_input_shape_str);
463

464
  if (key_it == sBlob->end()) {
465 466
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
467 468
    if ((static_cast<size_t>(sid) == kMKLDNNSessionID_CacheClearing) &&
        sBlob->size() &&
469 470 471 472 473 474
        (sBlob->size() >=
         static_cast<size_t>(cur_input_shape_cache_capacity))) {
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
475 476
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*sBlob)[cur_input_shape_str] = pBlob;
477
  } else {
478
    pBlob = key_it->second;
479 480
  }

481 482 483 484 485 486 487
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
488
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
489
  // lock will be automatically released when out of scope
490
  return;
T
tensor-tang 已提交
491 492
}

493 494
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
495
  BlobMap* pMap = p_blobmap_.get();
496
  std::shared_ptr<ShapeBlob> sBlob = nullptr;
497
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
498

499
  int sid = platform::get_cur_mkldnn_session_id();
T
tensor-tang 已提交
500

501
  std::lock_guard<std::mutex> lock(*p_mutex_);
502

503 504
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
505
  if (map_it == pMap->end()) {
506
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
507 508 509 510 511 512 513
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
  auto sBlob_it = sBlob->find(cur_input_shape_str);
  if (sBlob_it == sBlob->end()) {
514
    VLOG(2) << "GetBlob: sid=" << cur_input_shape_str
515 516 517 518
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
519 520 521 522

  // Find Blob via name
  auto key_it = pBlob->find(name);

523
  if (key_it == pBlob->end()) {
524
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
525 526
    return nullptr;
  }
527

528
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
529 530
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
531 532 533 534
}

#endif

Q
qijun 已提交
535
}  // namespace platform
Q
qijun 已提交
536
}  // namespace paddle