device_context.cc 15.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/platform/cuda_device_guard.h"
22
#endif
23

24 25
#include "glog/logging.h"

Q
qijun 已提交
26 27 28
namespace paddle {
namespace platform {

D
dzhwinter 已提交
29 30
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
31
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
32 33 34
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
35 36 37 38
        "Place %s is not supported, Please check that your paddle compiles "
        "with WITH_GPU "
        "option or check that your train process hold the correct gpu_id if "
        "you use Executor",
M
minqiyang 已提交
39
        place);
D
dzhwinter 已提交
40
  }
41
  return it->second.get().get();
D
dzhwinter 已提交
42 43
}

44 45 46 47 48 49 50 51 52 53 54
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
55 56
}

D
dzhwinter 已提交
57 58 59
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
60
  std::set<Place> set;
Y
Yu Yang 已提交
61 62 63 64 65
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
66
#ifdef PADDLE_WITH_MKLDNN
67
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
68
#else
69
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
70
#endif
Y
Yu Yang 已提交
71
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
72
#ifdef PADDLE_WITH_CUDA
73
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
74 75
#else
      PADDLE_THROW(
D
dzhwinter 已提交
76
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
77
          "option");
C
chengduoZH 已提交
78 79 80
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
81 82
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
83 84 85 86
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
87 88 89 90 91
#endif
    }
  }
}

92 93 94 95
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
96
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
97 98 99 100 101 102 103
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
104
Place CPUDeviceContext::GetPlace() const { return place_; }
105

106
#ifdef PADDLE_WITH_CUDA
107

Q
init  
qijun 已提交
108 109 110 111 112 113 114
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
115
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
116 117 118 119 120 121 122 123 124 125 126 127
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
128 129 130
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
131 132 133
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
134
    void* retv = buf->ptr();
S
sneaxiy 已提交
135 136 137 138
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
139
    return retv;
Q
init  
qijun 已提交
140 141
  }

S
sneaxiy 已提交
142 143 144 145 146 147
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
161
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
162 163 164 165 166 167
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
168
  CUDAPlace place_;
Q
init  
qijun 已提交
169 170
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
171
  mutable void* scratch_;
Q
init  
qijun 已提交
172
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
173
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
174
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
175 176
};

177
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
178
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
179 180 181
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
182
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream_));
Q
init  
qijun 已提交
183 184
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
185
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
186 187 188 189 190 191 192 193 194
  cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH));

  if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
    cublas_tensor_core_handle_.reset(
        new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH));
#endif
  }

C
chengduo 已提交
195 196 197
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

198 199
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
200
                          << ", Driver API Version: " << driver_version_ / 1000
201
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
202 203 204
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
205 206 207
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
208
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
209 210 211

  {
    // Check CUDA/CUDNN version compatiblity
212 213 214 215
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }

    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = cudnn_dso_ver / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
S
sneaxiy 已提交
231
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
S
sneaxiy 已提交
232 233 234 235 236 237 238 239 240 241
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
242 243 244 245 246 247 248 249
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cudnnCreate(&cudnn_handle_),
          "Failed to create Cudnn handle in DeviceContext");
      PADDLE_ENFORCE_CUDA_SUCCESS(
          dynload::cudnnSetStream(cudnn_handle_, stream_),
          "Failed to set stream for Cudnn handle in DeviceContext");
    } else {
      cudnn_handle_ = nullptr;
S
sneaxiy 已提交
250 251 252
    }
  }

S
sneaxiy 已提交
253
  callback_manager_.reset(new StreamCallbackManager(stream_));
254 255 256 257
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
258
  Wait();
S
sneaxiy 已提交
259
  WaitStreamCallback();
260 261
  cublas_handle_.reset();
  cublas_tensor_core_handle_.reset();
262 263
  eigen_stream_.reset();
  eigen_device_.reset();
264 265 266 267 268
  PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamDestroy(stream_));
  if (cudnn_handle_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::cudnnDestroy(cudnn_handle_),
                                "Failed to destory Cudnn handle");
  }
Q
qingqing01 已提交
269
#if !defined(_WIN32)
270
  if (nccl_comm_) {
271
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
272
  }
Q
qingqing01 已提交
273
#endif
274 275
}

L
liaogang 已提交
276
Place CUDADeviceContext::GetPlace() const { return place_; }
277

L
liaogang 已提交
278
void CUDADeviceContext::Wait() const {
279 280 281 282 283
  cudaError_t e_sync = cudaStreamSynchronize(stream_);
  if (e_sync != 0) {
    LOG(FATAL) << "cudaStreamSynchronize " << cudaGetErrorString(e_sync)
               << " errno: " << e_sync;
  }
284

285 286 287 288 289
  cudaError_t e_get = cudaGetLastError();
  if (e_get != 0) {
    LOG(FATAL) << "cudaGetLastError  " << cudaGetErrorString(e_get)
               << " errno: " << e_get;
  }
290 291
}

K
Kexin Zhao 已提交
292
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
293
  return compute_capability_;
K
Kexin Zhao 已提交
294 295
}

296
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
297
  return multi_process_ * max_threads_per_mp_;
298 299
}

300 301 302 303
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

304 305
bool CUDADeviceContext::tensor_core_available() const {
  return cublas_tensor_core_handle_ != nullptr;
S
sneaxiy 已提交
306 307
}

308
cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; }
309

S
sneaxiy 已提交
310
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
311
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
312
}
313

314
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
315

C
chengduoZH 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
330
#endif
Q
qijun 已提交
331

T
tensor-tang 已提交
332 333
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
334 335 336
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
337 338
}

S
Sylwester Fraczek 已提交
339
namespace {
340 341
// Current mkldnn session id.
thread_local size_t cur_mkldnn_session_id = kMKLDNNSessionID_Default;
342 343 344 345
// Current data input shape string.
// - For fixed-shape, it's a null string in default.
// - For dynamic-shape, it's user specific.
thread_local std::string cur_input_shape_str = "";
346 347 348
// the cache capacity of different input shapes for MKLDNN.
// Default 1 means fixed input shape, not dynamic shape.
thread_local int cur_input_shape_cache_capacity = 1;
349
}  // namespace
S
Sylwester Fraczek 已提交
350

351 352
void set_cur_mkldnn_session_id(size_t sid) { cur_mkldnn_session_id = sid; }
size_t get_cur_mkldnn_session_id(void) { return cur_mkldnn_session_id; }
353 354 355
void set_cur_input_shape_str(std::string input_shape_str) {
  cur_input_shape_str = input_shape_str;
}
356 357 358
void set_cur_input_shape_cache_capacity(int input_shape_cache_capacity) {
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
359

360 361
void MKLDNNDeviceContext::ResetBlobMap() const { p_blobmap_->clear(); }

362 363 364 365 366 367 368 369 370 371 372
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
  std::lock_guard<std::mutex> lock(*p_mutex_);
  BlobMap* pMap = p_blobmap_.get();
  auto map_it = pMap->find(cur_mkldnn_session_id);
  if (map_it == pMap->end()) {
    LOG(FATAL) << "MKLDNNDeviceContext don't find cur_mkldnn_session_id : "
               << cur_mkldnn_session_id;
  }
  return map_it->second->size();
}

373 374
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
375
  BlobMap* pMap = p_blobmap_.get();
376
  std::shared_ptr<ShapeBlob> sBlob = nullptr;
377 378
  std::shared_ptr<KeyBlob> pBlob = nullptr;

379
  int sid = platform::get_cur_mkldnn_session_id();
T
tensor-tang 已提交
380

381
  std::lock_guard<std::mutex> lock(*p_mutex_);
T
tensor-tang 已提交
382

383 384
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
385 386 387

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
388
    sBlob = std::shared_ptr<ShapeBlob>(new ShapeBlob());
389 390
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
391
  } else {
392
    sBlob = map_it->second;
393
  }
T
tensor-tang 已提交
394

395 396
  // Find KeyBlob for current input shape
  auto key_it = sBlob->find(cur_input_shape_str);
397

398
  if (key_it == sBlob->end()) {
399 400
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
401 402
    if ((static_cast<size_t>(sid) == kMKLDNNSessionID_CacheClearing) &&
        sBlob->size() &&
403 404 405 406 407 408
        (sBlob->size() >=
         static_cast<size_t>(cur_input_shape_cache_capacity))) {
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
409 410
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*sBlob)[cur_input_shape_str] = pBlob;
411
  } else {
412
    pBlob = key_it->second;
413 414
  }

415 416 417 418 419 420 421
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
422
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
423
  // lock will be automatically released when out of scope
424
  return;
T
tensor-tang 已提交
425 426
}

427 428
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
429
  BlobMap* pMap = p_blobmap_.get();
430
  std::shared_ptr<ShapeBlob> sBlob = nullptr;
431
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
432

433
  int sid = platform::get_cur_mkldnn_session_id();
T
tensor-tang 已提交
434

435
  std::lock_guard<std::mutex> lock(*p_mutex_);
436

437 438
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
439
  if (map_it == pMap->end()) {
440
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
441 442 443 444 445 446 447
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
  auto sBlob_it = sBlob->find(cur_input_shape_str);
  if (sBlob_it == sBlob->end()) {
448
    VLOG(2) << "GetBlob: sid=" << cur_input_shape_str
449 450 451 452
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
453 454 455 456

  // Find Blob via name
  auto key_it = pBlob->find(name);

457
  if (key_it == pBlob->end()) {
458
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
459 460
    return nullptr;
  }
461

462
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
463 464
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
465 466 467 468
}

#endif

Q
qijun 已提交
469
}  // namespace platform
Q
qijun 已提交
470
}  // namespace paddle