device_context.cc 14.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/platform/cuda_device_guard.h"
22
#endif
23

Q
qijun 已提交
24 25 26
namespace paddle {
namespace platform {

D
dzhwinter 已提交
27 28
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
29
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
30 31 32
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
    PADDLE_THROW(
M
minqiyang 已提交
33 34 35
        "Place %s is not supported, Please re-compile with WITH_GPU "
        "option",
        place);
D
dzhwinter 已提交
36
  }
37
  return it->second.get().get();
D
dzhwinter 已提交
38 39
}

40 41 42 43 44 45 46 47 48 49 50
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
                     return PtrType(new DevCtx(boost::get<PlaceType>(p)));
                   }));
C
chengduozh 已提交
51 52
}

D
dzhwinter 已提交
53 54 55
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
  PADDLE_ENFORCE_GT(places.size(), 0);
56
  std::set<Place> set;
Y
Yu Yang 已提交
57 58 59 60 61
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
62
#ifdef PADDLE_WITH_MKLDNN
63
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
64
#else
65
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
66
#endif
Y
Yu Yang 已提交
67
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
68
#ifdef PADDLE_WITH_CUDA
69
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
70 71
#else
      PADDLE_THROW(
D
dzhwinter 已提交
72
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
D
dzhwinter 已提交
73
          "option");
C
chengduoZH 已提交
74 75 76
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
77 78
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
79 80 81 82
#else
      PADDLE_THROW(
          "'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
          "option");
D
dzhwinter 已提交
83 84 85 86 87
#endif
    }
  }
}

88 89 90 91 92 93 94
DeviceTemporaryAllocator* DeviceTemporaryAllocator::allocators = nullptr;

#ifdef PADDLE_WITH_CUDA
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place, const cudaStream_t& stream) {
  PADDLE_ENFORCE(platform::is_gpu_place(place));
  auto place_stream = std::make_pair(place, stream);
95 96 97 98 99 100 101 102 103 104 105 106
  std::unique_lock<std::mutex> lock(mtx_);
  auto it = device_allocator_.find(place_stream);
  if (it == device_allocator_.end()) {
    auto tmp_allocator = new TemporaryAllocator(place);
    tmp_allocator->SetCallback([stream]() {
      PADDLE_ENFORCE(cudaStreamSynchronize(stream));
      PADDLE_ENFORCE(cudaGetLastError());
    });
    device_allocator_[place_stream].reset(tmp_allocator);
    return *tmp_allocator;
  } else {
    return *it->second;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  }
}

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CUDADeviceContext& dev_ctx) {
  return Get(dev_ctx.GetPlace(), dev_ctx.stream());
}
#endif

template <>
platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::CPUDeviceContext& dev_ctx) {
  return cpu_allocator_;
}

platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
    const platform::Place& place) {
  PADDLE_ENFORCE(platform::is_cpu_place(place), "You should pass CPUPlace");
  return cpu_allocator_;
}

129 130 131 132
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
133
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
134 135 136 137 138 139 140
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
141
Place CPUDeviceContext::GetPlace() const { return place_; }
142

143
#ifdef PADDLE_WITH_CUDA
144

Q
init  
qijun 已提交
145 146 147 148 149 150 151
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
152
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
153 154 155 156 157 158 159 160 161 162 163 164
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
165 166 167
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
Y
Yu Yang 已提交
168 169
    auto buf = paddle::memory::Alloc(place_, num_bytes,
                                     memory::Allocator::kScratchpad);
170
    void* retv = buf->ptr();
S
sneaxiy 已提交
171 172 173 174
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
175
    return retv;
Q
init  
qijun 已提交
176 177
  }

S
sneaxiy 已提交
178 179 180 181 182 183
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

  void* scratchpad() const override {
    if (scratch_ == NULL) {
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
      PADDLE_ENFORCE(
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
204
  CUDAPlace place_;
Q
init  
qijun 已提交
205 206
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
207
  mutable void* scratch_;
Q
init  
qijun 已提交
208
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
209
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
210
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
211 212
};

S
sneaxiy 已提交
213
CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place)
Y
Yu Yang 已提交
214
    : workspace_(nullptr), stream_(stream), place_(place) {
N
nhzlx 已提交
215
  PADDLE_ENFORCE(cudaSetDevice(place_.device));
S
sneaxiy 已提交
216 217 218
  PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
  PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_));
}
219

S
sneaxiy 已提交
220 221
CudnnHolder::~CudnnHolder() {
  PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
S
sneaxiy 已提交
222
}
223

S
sneaxiy 已提交
224
void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) {
Y
Yu Yang 已提交
225
  if (required_workspace_len <= WorkspaceSize()) {
S
sneaxiy 已提交
226
    return;
Y
Yu Yang 已提交
227
  }
S
sneaxiy 已提交
228 229 230
  if (workspace_ != nullptr) {
    // Maybe someone is using the current workspace
    PADDLE_ENFORCE(cudaStreamSynchronize(*stream_));
Y
Yu Yang 已提交
231
    workspace_.reset();
232
  }
Y
Yu Yang 已提交
233 234
  workspace_ = paddle::memory::Alloc(place_, required_workspace_len,
                                     paddle::memory::Allocator::kScratchpad);
S
sneaxiy 已提交
235
}
236 237 238

CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
    : place_(place), cudnn_holder_(nullptr) {
Y
Yu Yang 已提交
239
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
240 241 242
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
Q
init  
qijun 已提交
243 244 245
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&stream_, place);
246
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
247 248 249 250 251 252 253 254 255
  cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH));

  if (TensorCoreAvailable()) {
#if CUDA_VERSION >= 9000
    cublas_tensor_core_handle_.reset(
        new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH));
#endif
  }

C
chengduo 已提交
256 257 258
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

259 260
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
261
                          << ", Driver API Version: " << driver_version_ / 1000
262
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
263 264 265
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
266 267 268 269
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
                          << (cudnn_dso_ver % 100) / 10 << ".";
S
sneaxiy 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289

  {
    // Check CUDA/CUDNN version compatiblity
    auto local_cuda_version = runtime_version_ / 100;
    auto compile_cuda_version = CUDA_VERSION / 100;
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }

    if (dynload::HasCUDNN()) {
      auto local_cudnn_version = cudnn_dso_ver / 100;
      auto compile_cudnn_version = CUDNN_VERSION / 100;
S
sneaxiy 已提交
290
      if (local_cudnn_version < static_cast<size_t>(compile_cudnn_version)) {
S
sneaxiy 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303
        LOG_FIRST_N(WARNING, 1)
            << "WARNING: device: " << place_.device
            << ". The installed Paddle is compiled with CUDNN "
            << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10
            << ", but CUDNN version in your machine is "
            << local_cudnn_version / 10 << "." << local_cudnn_version % 10
            << ", which may cause serious incompatible bug. "
            << "Please recompile or reinstall Paddle with compatible CUDNN "
               "version.";
      }
    }
  }

S
sneaxiy 已提交
304
  callback_manager_.reset(new StreamCallbackManager(stream_));
305 306 307 308
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
L
liaogang 已提交
309
  Wait();
S
sneaxiy 已提交
310
  WaitStreamCallback();
311 312
  cublas_handle_.reset();
  cublas_tensor_core_handle_.reset();
313 314
  eigen_stream_.reset();
  eigen_device_.reset();
Q
init  
qijun 已提交
315
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
Q
qingqing01 已提交
316
#if !defined(_WIN32)
Q
qingqing01 已提交
317
  PADDLE_ENFORCE(dynload::ncclCommDestroy(nccl_comm_));
Q
qingqing01 已提交
318
#endif
319 320
}

L
liaogang 已提交
321
Place CUDADeviceContext::GetPlace() const { return place_; }
322

L
liaogang 已提交
323
void CUDADeviceContext::Wait() const {
324 325
  auto& allocator =
      DeviceTemporaryAllocator::Instance().Get<CUDADeviceContext>(*this);
326
  allocator.Release([this]() {
327 328 329
    PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
    PADDLE_ENFORCE(cudaGetLastError());
  });
330 331
}

K
Kexin Zhao 已提交
332
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
333
  return compute_capability_;
K
Kexin Zhao 已提交
334 335
}

336
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
337
  return multi_process_ * max_threads_per_mp_;
338 339
}

340 341 342 343
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
  return eigen_device_.get();
}

344 345
bool CUDADeviceContext::tensor_core_available() const {
  return cublas_tensor_core_handle_ != nullptr;
S
sneaxiy 已提交
346 347
}

348 349 350 351 352 353 354 355 356
CudnnHolder* CUDADeviceContext::cudnn_holder() const {
  std::call_once(init_cudnn_, [&]() {
    if (dynload::HasCUDNN()) {
      cudnn_holder_.reset(new CudnnHolder(&stream_, place_));
    }
  });
  return cudnn_holder_.get();
}

357
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
358
  return cudnn_holder()->cudnn_handle();
359 360
}

S
sneaxiy 已提交
361
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
362
  return CudnnWorkspaceHandle(cudnn_holder());
363
}
364

365
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
Q
qijun 已提交
366

C
chengduoZH 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
381
#endif
Q
qijun 已提交
382

T
tensor-tang 已提交
383 384
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
385 386 387
    : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() {
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
388 389
}

S
Sylwester Fraczek 已提交
390 391 392 393 394 395 396 397
namespace {
// Current thread's id.
thread_local int cur_thread_id = 0;
}

void set_cur_thread_id(int tid) { cur_thread_id = tid; }
int get_cur_thread_id(void) { return cur_thread_id; }

398 399
void MKLDNNDeviceContext::SetBlob(const std::string& name,
                                  std::shared_ptr<void> data) const {
400 401 402 403
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;

  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
404

405
  std::lock_guard<std::mutex> lock(*p_mutex_);
T
tensor-tang 已提交
406

407 408 409 410 411 412 413
  // Find KeyBlob for current thread
  auto map_it = pMap->find(tid);

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
    pBlob = std::shared_ptr<KeyBlob>(new KeyBlob());
    (*pMap)[tid] = pBlob;
414
  } else {
415
    pBlob = map_it->second;
416
  }
T
tensor-tang 已提交
417

418 419 420 421 422 423 424 425 426 427
  // Find Key in found (or newly created) KeyBlob
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) {
    (*pBlob)[name] = data;  // create new blob
  } else {
    key_it->second = data;  // set data to existing blob
  }

  // lock will be automatically released when out of scope
428
  return;
T
tensor-tang 已提交
429 430
}

431 432
std::shared_ptr<void> MKLDNNDeviceContext::GetBlob(
    const std::string& name) const {
433 434
  BlobMap* pMap = p_blobmap_.get();
  std::shared_ptr<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
435

436
  int tid = platform::get_cur_thread_id();
T
tensor-tang 已提交
437

438
  std::lock_guard<std::mutex> lock(*p_mutex_);
439 440 441 442 443 444 445 446 447 448

  // Find KeyBlob for current thread firstly
  auto map_it = pMap->find(tid);
  if (map_it == pMap->end()) return nullptr;
  pBlob = map_it->second;

  // Find Blob via name
  auto key_it = pBlob->find(name);

  if (key_it == pBlob->end()) return nullptr;
449

450 451
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
452 453 454 455
}

#endif

Q
qijun 已提交
456
}  // namespace platform
Q
qijun 已提交
457
}  // namespace paddle