device_context.cc 19.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
15
#include <thread>  //NOLINT
Y
Yu Yang 已提交
16
#include <unordered_set>
17 18
#include <vector>

Y
Yi Wang 已提交
19
#include "paddle/fluid/memory/memory.h"
20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
22
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/platform/cuda_device_guard.h"
24
#endif
25

26
#include "glog/logging.h"
27
#include "unsupported/Eigen/CXX11/ThreadPool"
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
#ifdef PADDLE_WITH_CUDA
  if (size == 0 || !platform::is_gpu_place(place)) {
    return Alloc(place, size);
  }
  auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
      platform::DeviceContextPool::Instance().Get(place));
  auto& desired_dev_ctx =
      static_cast<const platform::CUDADeviceContext&>(dev_ctx);
  if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
    return Alloc(place, size);
  } else {
    return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
        desired_dev_ctx, size);
  }
#else
  return Alloc(place, size);
#endif
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
56 57 58
namespace paddle {
namespace platform {

D
dzhwinter 已提交
59 60
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
61
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
62 63
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
64 65
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
66 67
        "with WITH_GPU or WITH_XPU option or check that your train process "
        "hold the "
G
GaoWei8 已提交
68 69
        "correct gpu_id if you use Executor.",
        place));
D
dzhwinter 已提交
70
  }
71
  return it->second.get().get();
D
dzhwinter 已提交
72 73
}

74 75 76 77 78 79 80 81 82
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
83
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
84
                   }));
C
chengduozh 已提交
85 86
}

D
dzhwinter 已提交
87 88
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
89 90 91 92 93
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
94
  std::set<Place> set;
Y
Yu Yang 已提交
95 96 97 98 99
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
100
#ifdef PADDLE_WITH_MKLDNN
101
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
102
#else
103
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
104
#endif
Y
Yu Yang 已提交
105
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
106
#ifdef PADDLE_WITH_CUDA
107
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
108
#else
G
GaoWei8 已提交
109 110 111
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
112 113 114
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
115 116
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
117
#else
G
GaoWei8 已提交
118
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
119 120
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
121 122 123 124 125 126 127 128
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
D
dzhwinter 已提交
129 130 131 132 133
#endif
    }
  }
}

134 135
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
136
  InitPoolDevice();
137 138
}

D
dzhwinter 已提交
139
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
140
  eigen_device_.reset(new Eigen::DefaultDevice());
141 142 143 144 145 146 147 148 149 150
  InitPoolDevice();
}

void CPUDeviceContext::InitPoolDevice() {
  using EigenEnv = Eigen::StlThreadEnvironment;
  using EigenThreadPool = Eigen::ThreadPoolTempl<EigenEnv>;
  int num_threads = std::thread::hardware_concurrency();
  eigen_threadpool_.reset(new EigenThreadPool(num_threads));
  eigen_pool_device_.reset(
      new Eigen::ThreadPoolDevice(eigen_threadpool_.get(), num_threads));
151 152 153 154 155 156
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

157 158 159 160
Eigen::ThreadPoolDevice* CPUDeviceContext::eigen_pool_device() const {
  return eigen_pool_device_.get();
}

D
dzhwinter 已提交
161
Place CPUDeviceContext::GetPlace() const { return place_; }
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

XPUDeviceContext::~XPUDeviceContext() { xpu::destroy_context(context_); }

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  context_ = xpu::create_context();
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  xpu_wait();
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

206
#ifdef PADDLE_WITH_CUDA
207

Q
init  
qijun 已提交
208 209 210 211 212 213 214
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
215
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
216 217 218 219 220 221 222 223 224 225 226 227
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
228 229 230
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
231 232 233
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
234
    void* retv = buf->ptr();
S
sneaxiy 已提交
235 236 237 238
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
239
    return retv;
Q
init  
qijun 已提交
240 241
  }

S
sneaxiy 已提交
242 243 244 245 246 247
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
248 249 250

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
251 252 253 254
// windows use an old version of eigen that uses kCudaScratchSize,
// once windows updates eigen to a recent version, the following code
// can use kGpuScratchSize uniformly
#ifdef _WIN32
Q
init  
qijun 已提交
255
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
Z
Zhang Ting 已提交
256 257 258
#else
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
#endif
Q
init  
qijun 已提交
259 260 261 262 263 264
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
265
#ifdef _WIN32
Q
init  
qijun 已提交
266 267
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
Z
Zhang Ting 已提交
268 269 270
#else
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
#endif
Q
init  
qijun 已提交
271
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
272
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
273 274 275 276 277 278
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
279
  CUDAPlace place_;
Q
init  
qijun 已提交
280 281
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
282
  mutable void* scratch_;
Q
init  
qijun 已提交
283
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
284
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
285
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
286 287
};

288 289 290 291 292 293 294 295 296
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

297 298 299 300 301 302 303 304 305 306 307 308
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
309
                         const stream::Priority& priority) {
310 311 312 313 314 315
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
G
Guo Sheng 已提交
316
  InitCuSolverContext();
317 318 319 320 321 322
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
G
Guo Sheng 已提交
323
  DestoryCuSolverContext();
324 325
}

326
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
327
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
328 329 330
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
331
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
332
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
333

C
chengduo 已提交
334 335 336
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

337 338
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
                          << ", CUDA Capability: " << compute_capability_
C
chengduo 已提交
339
                          << ", Driver API Version: " << driver_version_ / 1000
340
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
341 342 343
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
344 345 346
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
347
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
348 349 350

  {
    // Check CUDA/CUDNN version compatiblity
351 352 353 354
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
355 356 357 358 359 360 361 362 363 364 365 366
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
367
  default_ctx_.reset(new CUDAContext(place_));
368 369 370 371
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
372 373 374 375 376
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
377 378
}

L
liaogang 已提交
379
Place CUDADeviceContext::GetPlace() const { return place_; }
380

381
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
382

K
Kexin Zhao 已提交
383
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
384
  return compute_capability_;
K
Kexin Zhao 已提交
385 386
}

387
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
388
  return multi_process_ * max_threads_per_mp_;
389 390
}

391 392 393 394 395 396
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

397
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
398
  return context()->EigenDevice().get();
399 400
}

401
bool CUDADeviceContext::tensor_core_available() const {
402
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
403 404
}

405 406 407 408
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

409 410 411
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return context()->CudnnHandle();
}
412

S
sneaxiy 已提交
413
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
414
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
415
}
416

G
Guo Sheng 已提交
417 418 419 420
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}

421 422 423
cudaStream_t CUDADeviceContext::stream() const {
  return context()->RawStream();
}
Q
qijun 已提交
424

C
chengduoZH 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
439
#endif
Q
qijun 已提交
440

T
tensor-tang 已提交
441 442
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
A
Adam 已提交
443 444 445
    : CPUDeviceContext(place),
      engine_(mkldnn::engine::kind::cpu, 0),
      p_blobmap_() {
446 447
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
448 449
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
MKLDNNDeviceContextThreadLocals::Body::Body() {
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
467 468
  cur_input_shape_str = input_shape_str;
}
469 470
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
471 472
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
473

474 475
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
476 477 478
  cur_paddle_data_layout = dl;
}

479 480
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
481 482 483
  return cur_paddle_data_layout;
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
499
}
500

501
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
502
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
503
  BlobMap* pMap = p_blobmap_.get();
504
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
505
  if (map_it == pMap->end()) {
506 507 508
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
509 510 511 512
  }
  return map_it->second->size();
}

513
void MKLDNNDeviceContext::SetBlob(const std::string& name,
514
                                  BlobPtr_t<void> data) const {
515
  BlobMap* pMap = p_blobmap_.get();
516 517
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
518

519
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
520

521
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
522

523 524
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
525 526 527

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
528
    sBlob = std::make_shared<ShapeBlob>();
529 530
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
531
  } else {
532
    sBlob = map_it->second;
533
  }
T
tensor-tang 已提交
534

535
  // Find KeyBlob for current input shape
536
  auto key_it = sBlob->find(tls().cur_input_shape_str);
537

538
  if (key_it == sBlob->end()) {
539 540
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
541 542
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
543
        sBlob->size() &&
544
        (sBlob->size() >=
545
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
546 547 548 549
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
550 551
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
552
  } else {
553
    pBlob = key_it->second;
554 555
  }

556 557 558 559 560 561 562
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
563
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
564
  // lock will be automatically released when out of scope
565
  return;
T
tensor-tang 已提交
566 567
}

568
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
569
    const std::string& name) const {
570
  BlobMap* pMap = p_blobmap_.get();
571 572
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
573

574
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
575

576
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
577

578 579
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
580
  if (map_it == pMap->end()) {
581
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
582 583 584 585 586
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
587
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
588
  if (sBlob_it == sBlob->end()) {
589
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
590 591 592 593
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
594 595 596 597

  // Find Blob via name
  auto key_it = pBlob->find(name);

598
  if (key_it == pBlob->end()) {
599
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
600 601
    return nullptr;
  }
602

603
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
604 605
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
606 607 608 609
}

#endif

Q
qijun 已提交
610
}  // namespace platform
Q
qijun 已提交
611
}  // namespace paddle