assign_op.cc 6.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

15 16 17
#include "paddle/fluid/operators/assign_op.h"

#include <string>
Y
Yu Yang 已提交
18

W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31
namespace paddle {
namespace framework {
class OpDesc;
class Variable;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct float16;
}  // namespace platform
}  // namespace paddle

Y
Yu Yang 已提交
32 33 34
namespace paddle {
namespace operators {

35
class AssignOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
36 37 38 39
 public:
  AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
40
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
41

42 43 44 45 46 47 48 49 50
  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasInput("X")) {
      auto type = ctx->GetInputsVarType("X")[0];
      if (type == framework::proto::VarType::SELECTED_ROWS ||
          type == framework::proto::VarType::LOD_TENSOR) {
        ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
        if (type == framework::proto::VarType::LOD_TENSOR) {
          ctx->ShareLoD("X", /*->*/ "Out");
        }
51 52 53 54 55 56 57
      } else if (type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
        if (ctx->IsRuntime()) {
          // The runtime output shape is determined in kernel.
          return;
        } else {
          ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
        }
58 59 60 61 62
      }
    }
  }

 protected:
63 64 65 66 67 68 69 70
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }

71 72
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
L
liym27 已提交
73 74 75 76 77 78 79 80 81 82 83
    const framework::Variable *var = ctx.InputVar("X");
    if (var->IsType<framework::LoDTensorArray>()) {
      auto t_arr = var->Get<framework::LoDTensorArray>();
      // NOTE(liym27): Support an empty tensor array as Input.
      // And set the kernel type is float.
      if (t_arr.size() == 0) {
        return framework::OpKernelType(framework::proto::VarType::FP32,
                                       ctx.device_context());
      }
    }

84 85 86
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
87 88 89
  }
};

90 91 92
class AssignInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
93
    ctx->SyncTypeAndDataType("X", "Out");
94 95 96
  }
};

97 98 99 100
class AssignKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *x = ctx.InputVar("X");
Y
Yu Yang 已提交
101 102 103
    if (x == nullptr) {
      return;
    }
104 105 106
    PADDLE_ENFORCE_EQ(
        ctx.HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of assign_op is not found."));
107
    auto *out = ctx.OutputVar("Out");
Y
Yu Yang 已提交
108
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
109
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
D
dzhwinter 已提交
110

Y
Yu Yang 已提交
111 112 113 114 115 116
    framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
  }
};

class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
117
  void Make() override {
Y
Yu Yang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    AddInput("X",
             "(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
             "could be LoDTensor, SelectedRows or LoDTensorArray.")
        .AsDispensable();
    AddOutput("Out",
              "(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
              "is the same as input X.");
    AddComment(R"DOC(Assign Operator

Out = X,  when type in [LoDTensor/SelectedRows/LoDTensorArray]
raise error if the type is not listed above.
)DOC");
  }
};

H
hong 已提交
133 134
template <typename T>
class AssignGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
135
 public:
H
hong 已提交
136
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
137 138

 protected:
139
  void Apply(GradOpPtr<T> op) const override {
Y
Yu Yang 已提交
140
    op->SetType("assign");
H
hong 已提交
141 142
    op->SetInput("X", this->OutputGrad("Out"));
    op->SetOutput("Out", this->InputGrad("X"));
Y
Yu Yang 已提交
143 144 145
  }
};

146 147
DECLARE_INPLACE_OP_INFERER(AssignOpInplaceInferer, {"X", "Out"});

Y
Yu Yang 已提交
148 149 150 151
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
152
namespace plat = paddle::platform;
H
hong 已提交
153 154 155
REGISTER_OPERATOR(assign, ops::AssignOp,
                  ops::AssignGradMaker<paddle::framework::OpDesc>,
                  ops::AssignGradMaker<paddle::imperative::OpBase>,
156 157
                  ops::AssignOpProtoMaker, ops::AssignOpInplaceInferer,
                  ops::AssignInferVarType);
H
hong 已提交
158

159 160
REGISTER_OP_CPU_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                               ops::AssignKernel, int, ops::AssignKernel,
161 162 163
                               int64_t, ops::AssignKernel, uint8_t,
                               ops::AssignKernel, bool, ops::AssignKernel,
                               plat::float16, ops::AssignKernel, plat::bfloat16,
G
Guo Sheng 已提交
164
                               ops::AssignKernel);
165

166
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
167 168
REGISTER_OP_CUDA_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                                ops::AssignKernel, int, ops::AssignKernel,
169 170 171
                                int64_t, ops::AssignKernel, uint8_t,
                                ops::AssignKernel, bool, ops::AssignKernel,
                                plat::float16, ops::AssignKernel);
172
#endif