assign_op.cc 4.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

15 16 17 18
#include "paddle/fluid/operators/assign_op.h"

#include <memory>
#include <string>
Y
Yu Yang 已提交
19 20 21 22

namespace paddle {
namespace operators {

23
class AssignOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
24 25 26 27
 public:
  AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
28
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43
  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasInput("X")) {
      auto type = ctx->GetInputsVarType("X")[0];
      if (type == framework::proto::VarType::SELECTED_ROWS ||
          type == framework::proto::VarType::LOD_TENSOR) {
        ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
        if (type == framework::proto::VarType::LOD_TENSOR) {
          ctx->ShareLoD("X", /*->*/ "Out");
        }
      }
    }
  }

 protected:
44 45 46 47 48 49 50 51
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }

52 53
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
54 55 56
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
57 58 59 60 61 62 63
  }
};

class AssignKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *x = ctx.InputVar("X");
Y
Yu Yang 已提交
64 65 66
    if (x == nullptr) {
      return;
    }
67
    auto *out = ctx.OutputVar("Out");
Y
Yu Yang 已提交
68 69 70
    PADDLE_ENFORCE(
        out != nullptr,
        "The Output(Out) should not be null if the Input(X) is set.");
Y
Yu Yang 已提交
71
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
72
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
D
dzhwinter 已提交
73

Y
Yu Yang 已提交
74 75 76 77 78 79
    framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
  }
};

class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
80
  void Make() override {
Y
Yu Yang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    AddInput("X",
             "(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
             "could be LoDTensor, SelectedRows or LoDTensorArray.")
        .AsDispensable();
    AddOutput("Out",
              "(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
              "is the same as input X.");
    AddComment(R"DOC(Assign Operator

Out = X,  when type in [LoDTensor/SelectedRows/LoDTensorArray]
raise error if the type is not listed above.
)DOC");
  }
};

H
hong 已提交
96 97
template <typename T>
class AssignGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
98
 public:
H
hong 已提交
99
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
100 101

 protected:
H
hong 已提交
102 103
  std::unique_ptr<T> Apply() const override {
    auto *op = new T();
Y
Yu Yang 已提交
104
    op->SetType("assign");
H
hong 已提交
105 106 107
    op->SetInput("X", this->OutputGrad("Out"));
    op->SetOutput("Out", this->InputGrad("X"));
    return std::unique_ptr<T>(op);
Y
Yu Yang 已提交
108 109 110
  }
};

111 112
DECLARE_INPLACE_OP_INFERER(AssignOpInplaceInferer, {"X", "Out"});

Y
Yu Yang 已提交
113 114 115 116
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
117 118 119
REGISTER_OPERATOR(assign, ops::AssignOp,
                  ops::AssignGradMaker<paddle::framework::OpDesc>,
                  ops::AssignGradMaker<paddle::imperative::OpBase>,
120
                  ops::AssignOpProtoMaker, ops::AssignOpInplaceInferer);
H
hong 已提交
121

122 123
REGISTER_OP_CPU_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                               ops::AssignKernel, int, ops::AssignKernel,
G
Guo Sheng 已提交
124 125
                               int64_t, ops::AssignKernel, bool,
                               ops::AssignKernel);
126 127 128 129

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                                ops::AssignKernel, int, ops::AssignKernel,
G
Guo Sheng 已提交
130 131
                                int64_t, ops::AssignKernel, bool,
                                ops::AssignKernel);
132
#endif