assign_op.cc 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

15 16 17 18
#include "paddle/fluid/operators/assign_op.h"

#include <memory>
#include <string>
Y
Yu Yang 已提交
19 20 21 22

namespace paddle {
namespace operators {

23
class AssignOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
24 25 26 27
 public:
  AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
28
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
29

30 31 32 33 34 35 36 37 38
  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasInput("X")) {
      auto type = ctx->GetInputsVarType("X")[0];
      if (type == framework::proto::VarType::SELECTED_ROWS ||
          type == framework::proto::VarType::LOD_TENSOR) {
        ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
        if (type == framework::proto::VarType::LOD_TENSOR) {
          ctx->ShareLoD("X", /*->*/ "Out");
        }
39 40 41 42 43 44 45
      } else if (type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
        if (ctx->IsRuntime()) {
          // The runtime output shape is determined in kernel.
          return;
        } else {
          ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
        }
46 47 48 49 50
      }
    }
  }

 protected:
51 52 53 54 55 56 57 58
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }

59 60
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
L
liym27 已提交
61 62 63 64 65 66 67 68 69 70 71
    const framework::Variable *var = ctx.InputVar("X");
    if (var->IsType<framework::LoDTensorArray>()) {
      auto t_arr = var->Get<framework::LoDTensorArray>();
      // NOTE(liym27): Support an empty tensor array as Input.
      // And set the kernel type is float.
      if (t_arr.size() == 0) {
        return framework::OpKernelType(framework::proto::VarType::FP32,
                                       ctx.device_context());
      }
    }

72 73 74
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
75 76 77
  }
};

78 79 80
class AssignInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
81
    ctx->SyncTypeAndDataType("X", "Out");
82 83 84
  }
};

85 86 87 88
class AssignKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *x = ctx.InputVar("X");
Y
Yu Yang 已提交
89 90 91
    if (x == nullptr) {
      return;
    }
92 93 94
    PADDLE_ENFORCE_EQ(
        ctx.HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of assign_op is not found."));
95
    auto *out = ctx.OutputVar("Out");
Y
Yu Yang 已提交
96
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
97
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
D
dzhwinter 已提交
98

Y
Yu Yang 已提交
99 100 101 102 103 104
    framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
  }
};

class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
105
  void Make() override {
Y
Yu Yang 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    AddInput("X",
             "(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
             "could be LoDTensor, SelectedRows or LoDTensorArray.")
        .AsDispensable();
    AddOutput("Out",
              "(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
              "is the same as input X.");
    AddComment(R"DOC(Assign Operator

Out = X,  when type in [LoDTensor/SelectedRows/LoDTensorArray]
raise error if the type is not listed above.
)DOC");
  }
};

H
hong 已提交
121 122
template <typename T>
class AssignGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
123
 public:
H
hong 已提交
124
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
125 126

 protected:
127
  void Apply(GradOpPtr<T> op) const override {
Y
Yu Yang 已提交
128
    op->SetType("assign");
H
hong 已提交
129 130
    op->SetInput("X", this->OutputGrad("Out"));
    op->SetOutput("Out", this->InputGrad("X"));
Y
Yu Yang 已提交
131 132 133
  }
};

134 135
DECLARE_INPLACE_OP_INFERER(AssignOpInplaceInferer, {"X", "Out"});

Y
Yu Yang 已提交
136 137 138 139
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
140
namespace plat = paddle::platform;
H
hong 已提交
141 142 143
REGISTER_OPERATOR(assign, ops::AssignOp,
                  ops::AssignGradMaker<paddle::framework::OpDesc>,
                  ops::AssignGradMaker<paddle::imperative::OpBase>,
144 145
                  ops::AssignOpProtoMaker, ops::AssignOpInplaceInferer,
                  ops::AssignInferVarType);
H
hong 已提交
146

147 148
REGISTER_OP_CPU_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                               ops::AssignKernel, int, ops::AssignKernel,
G
Guo Sheng 已提交
149
                               int64_t, ops::AssignKernel, bool,
150
                               ops::AssignKernel, plat::float16,
G
Guo Sheng 已提交
151
                               ops::AssignKernel);
152 153 154 155

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                                ops::AssignKernel, int, ops::AssignKernel,
G
Guo Sheng 已提交
156
                                int64_t, ops::AssignKernel, bool,
157
                                ops::AssignKernel, plat::float16,
G
Guo Sheng 已提交
158
                                ops::AssignKernel);
159
#endif