assign_op.cc 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

15 16 17 18
#include "paddle/fluid/operators/assign_op.h"

#include <memory>
#include <string>
Y
Yu Yang 已提交
19 20 21 22

namespace paddle {
namespace operators {

23
class AssignOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
24 25 26 27
 public:
  AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
28
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43
  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasInput("X")) {
      auto type = ctx->GetInputsVarType("X")[0];
      if (type == framework::proto::VarType::SELECTED_ROWS ||
          type == framework::proto::VarType::LOD_TENSOR) {
        ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
        if (type == framework::proto::VarType::LOD_TENSOR) {
          ctx->ShareLoD("X", /*->*/ "Out");
        }
      }
    }
  }

 protected:
44 45 46 47 48 49 50 51
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }

52 53
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
54 55 56
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
57 58 59
  }
};

60 61 62
class AssignInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
63
    ctx->SyncTypeAndDataType("X", "Out");
64 65 66
  }
};

67 68 69 70
class AssignKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *x = ctx.InputVar("X");
Y
Yu Yang 已提交
71 72 73
    if (x == nullptr) {
      return;
    }
74 75 76
    PADDLE_ENFORCE_EQ(
        ctx.HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of assign_op is not found."));
77
    auto *out = ctx.OutputVar("Out");
Y
Yu Yang 已提交
78
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
79
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
D
dzhwinter 已提交
80

Y
Yu Yang 已提交
81 82 83 84 85 86
    framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
  }
};

class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
87
  void Make() override {
Y
Yu Yang 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    AddInput("X",
             "(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
             "could be LoDTensor, SelectedRows or LoDTensorArray.")
        .AsDispensable();
    AddOutput("Out",
              "(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
              "is the same as input X.");
    AddComment(R"DOC(Assign Operator

Out = X,  when type in [LoDTensor/SelectedRows/LoDTensorArray]
raise error if the type is not listed above.
)DOC");
  }
};

H
hong 已提交
103 104
template <typename T>
class AssignGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
105
 public:
H
hong 已提交
106
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
107 108

 protected:
109
  void Apply(GradOpPtr<T> op) const override {
Y
Yu Yang 已提交
110
    op->SetType("assign");
H
hong 已提交
111 112
    op->SetInput("X", this->OutputGrad("Out"));
    op->SetOutput("Out", this->InputGrad("X"));
Y
Yu Yang 已提交
113 114 115
  }
};

116 117
DECLARE_INPLACE_OP_INFERER(AssignOpInplaceInferer, {"X", "Out"});

Y
Yu Yang 已提交
118 119 120 121
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
122
namespace plat = paddle::platform;
H
hong 已提交
123 124 125
REGISTER_OPERATOR(assign, ops::AssignOp,
                  ops::AssignGradMaker<paddle::framework::OpDesc>,
                  ops::AssignGradMaker<paddle::imperative::OpBase>,
126 127
                  ops::AssignOpProtoMaker, ops::AssignOpInplaceInferer,
                  ops::AssignInferVarType);
H
hong 已提交
128

129 130
REGISTER_OP_CPU_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                               ops::AssignKernel, int, ops::AssignKernel,
G
Guo Sheng 已提交
131
                               int64_t, ops::AssignKernel, bool,
132
                               ops::AssignKernel, plat::float16,
G
Guo Sheng 已提交
133
                               ops::AssignKernel);
134 135 136 137

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                                ops::AssignKernel, int, ops::AssignKernel,
G
Guo Sheng 已提交
138
                                int64_t, ops::AssignKernel, bool,
139
                                ops::AssignKernel, plat::float16,
G
Guo Sheng 已提交
140
                                ops::AssignKernel);
141
#endif