assign_op.cc 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yu Yang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yu Yang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yu Yang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yu Yang 已提交
14

15 16 17 18
#include "paddle/fluid/operators/assign_op.h"

#include <memory>
#include <string>
Y
Yu Yang 已提交
19 20 21 22

namespace paddle {
namespace operators {

23
class AssignOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
24 25 26 27
 public:
  AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs)
28
      : OperatorWithKernel(type, inputs, outputs, attrs) {}
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43
  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasInput("X")) {
      auto type = ctx->GetInputsVarType("X")[0];
      if (type == framework::proto::VarType::SELECTED_ROWS ||
          type == framework::proto::VarType::LOD_TENSOR) {
        ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
        if (type == framework::proto::VarType::LOD_TENSOR) {
          ctx->ShareLoD("X", /*->*/ "Out");
        }
      }
    }
  }

 protected:
44 45 46 47 48 49 50 51
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }

52 53
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
54 55 56
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
57 58 59
  }
};

60 61 62 63 64 65 66 67 68 69 70
class AssignInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto out_var_name = ctx->Output("Out")[0];
    auto input_type = ctx->GetType(ctx->Input("X")[0]);
    auto input_data_type = ctx->GetDataType(ctx->Input("X")[0]);
    ctx->SetType(out_var_name, input_type);
    ctx->SetDataType(out_var_name, input_data_type);
  }
};

71 72 73 74
class AssignKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *x = ctx.InputVar("X");
Y
Yu Yang 已提交
75 76 77
    if (x == nullptr) {
      return;
    }
78 79 80
    PADDLE_ENFORCE_EQ(
        ctx.HasOutput("Out"), true,
        platform::errors::NotFound("Output(Out) of assign_op is not found."));
81
    auto *out = ctx.OutputVar("Out");
Y
Yu Yang 已提交
82
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
83
    auto &dev_ctx = *pool.Get(ctx.GetPlace());
D
dzhwinter 已提交
84

Y
Yu Yang 已提交
85 86 87 88 89 90
    framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
  }
};

class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
91
  void Make() override {
Y
Yu Yang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    AddInput("X",
             "(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
             "could be LoDTensor, SelectedRows or LoDTensorArray.")
        .AsDispensable();
    AddOutput("Out",
              "(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
              "is the same as input X.");
    AddComment(R"DOC(Assign Operator

Out = X,  when type in [LoDTensor/SelectedRows/LoDTensorArray]
raise error if the type is not listed above.
)DOC");
  }
};

H
hong 已提交
107 108
template <typename T>
class AssignGradMaker : public framework::SingleGradOpMaker<T> {
Y
Yu Yang 已提交
109
 public:
H
hong 已提交
110
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Y
Yu Yang 已提交
111 112

 protected:
113
  void Apply(GradOpPtr<T> op) const override {
Y
Yu Yang 已提交
114
    op->SetType("assign");
H
hong 已提交
115 116
    op->SetInput("X", this->OutputGrad("Out"));
    op->SetOutput("Out", this->InputGrad("X"));
Y
Yu Yang 已提交
117 118 119
  }
};

120 121
DECLARE_INPLACE_OP_INFERER(AssignOpInplaceInferer, {"X", "Out"});

Y
Yu Yang 已提交
122 123 124 125
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
126
namespace plat = paddle::platform;
H
hong 已提交
127 128 129
REGISTER_OPERATOR(assign, ops::AssignOp,
                  ops::AssignGradMaker<paddle::framework::OpDesc>,
                  ops::AssignGradMaker<paddle::imperative::OpBase>,
130 131
                  ops::AssignOpProtoMaker, ops::AssignOpInplaceInferer,
                  ops::AssignInferVarType);
H
hong 已提交
132

133 134
REGISTER_OP_CPU_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                               ops::AssignKernel, int, ops::AssignKernel,
G
Guo Sheng 已提交
135
                               int64_t, ops::AssignKernel, bool,
136
                               ops::AssignKernel, plat::float16,
G
Guo Sheng 已提交
137
                               ops::AssignKernel);
138 139 140 141

#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
                                ops::AssignKernel, int, ops::AssignKernel,
G
Guo Sheng 已提交
142
                                int64_t, ops::AssignKernel, bool,
143
                                ops::AssignKernel, plat::float16,
G
Guo Sheng 已提交
144
                                ops::AssignKernel);
145
#endif