slice_op.cc 20.6 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
16

W
whs 已提交
17
#include <algorithm>
18
#include <memory>
19
#include <string>
W
whs 已提交
20
#include <vector>
21

H
hong 已提交
22
#include "paddle/phi/kernels/funcs/slice_utils.h"
W
whs 已提交
23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
34 35
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "slice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "slice");
36

37
    // Case 1: Special treatment when input is a tensor array.
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      PADDLE_ENFORCE_EQ(axes.size(), 1,
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
52 53
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
54 55 56 57 58 59
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
60 61

    // Case 2: input is a tensor.
W
whs 已提交
62
    auto in_dims = ctx->GetInputDim("Input");
63
    PADDLE_ENFORCE_LT(in_dims.size(), 7,
T
Thunderbrook 已提交
64 65
                      platform::errors::InvalidArgument(
                          "The rank of input should be less than 7."));
W
whs 已提交
66
    framework::DDim out_dims(in_dims);
67

W
whs 已提交
68 69
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
H
Hongyu Liu 已提交
70
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
71
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
72 73 74 75 76 77
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

78 79 80 81
    // 2.1 Check attrs.
    auto starts_size = starts.size();
    auto ends_size = ends.size();

82
    if (ctx->HasInputs("StartsTensorList")) {
83 84
      starts_size = ctx->Inputs("StartsTensorList").size();
      PADDLE_ENFORCE_GT(starts_size, 0,
T
Thunderbrook 已提交
85 86
                        platform::errors::InvalidArgument(
                            "StartsTensorList size can't be zero"));
87 88
    }
    if (ctx->HasInputs("EndsTensorList")) {
89
      ends_size = ctx->Inputs("EndsTensorList").size();
90 91 92
      PADDLE_ENFORCE_GT(ends_size, 0,
                        platform::errors::InvalidArgument(
                            "EndsTensorList size can't be zero"));
93 94
    }

95
    if (!ctx->HasInput("StartsTensor")) {
96 97
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
T
Thunderbrook 已提交
98 99
          platform::errors::InvalidArgument(
              "The size of starts must be equal to the size of axes."));
100
    }
101
    if (!ctx->HasInput("EndsTensor")) {
T
Thunderbrook 已提交
102 103 104 105
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends must be equal to the size of axes."));
106
    }
107 108 109 110 111
    for (auto &axis : axes) {
      if (axis < 0) {
        axis = std::max(0, axis + in_dims.size());
      }
    }
H
hong 已提交
112 113
    phi::funcs::CheckAndUpdateSliceAttrs<int>(in_dims, axes, &starts, &ends,
                                              nullptr, &infer_flags);
H
Hongyu Liu 已提交
114

H
hong 已提交
115 116
    auto slice_dims = phi::funcs::GetSliceDims<int>(in_dims, axes, starts, ends,
                                                    nullptr, &infer_flags);
117
    if (ctx->IsRuntime()) {
H
hong 已提交
118 119
      out_dims = phi::funcs::GetDecreasedDims<int>(slice_dims, decrease_axis,
                                                   &infer_flags);
120
    } else {
H
hong 已提交
121 122
      out_dims =
          phi::funcs::GetDecreasedDims<int>(slice_dims, decrease_axis, nullptr);
H
Hongyu Liu 已提交
123
    }
124

W
whs 已提交
125
    ctx->SetOutputDim("Out", out_dims);
126
    if (axes.size() > 0 && axes[0] != 0) {
J
jerrywgz 已提交
127 128
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
129 130 131 132
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
133
      const framework::ExecutionContext &ctx) const override {
134 135 136 137 138 139 140
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
          in_tensor.IsInitialized(), true,
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
141 142
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
143 144 145
        return framework::OpKernelType(
            framework::TransToProtoVarType(in_tensor.dtype()),
            ctx.device_context());
146
      }
147 148 149 150 151 152 153 154 155 156 157

#ifdef PADDLE_WITH_MKLDNN
      auto input_data_type =
          framework::OperatorWithKernel::IndicateVarDataType(ctx, "Input");

      if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
        // OneDNN uses blocking format, which cannot be always supported with
        // reorders, because if blocked dimension is not divisible by 8 or
        // 16(depending on which blocking format is used) submemory cannot be
        // created, so in that scenario a fallback is needed
        auto tmp_md = dnnl::memory::desc(
158
            phi::vectorize(ctx.Input<Tensor>("Input")->dims()),
159 160 161 162 163 164 165 166
            dnnl::memory::data_type::f32, ctx.Input<Tensor>("Input")->format());
        if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
          return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                         framework::DataLayout::kMKLDNN,
                                         framework::LibraryType::kMKLDNN);
      }
#endif

167 168
      return framework::OpKernelType(
          framework::TransToProtoVarType(in_tensor.dtype()), in_tensor.place());
169
    }
170
    return framework::OpKernelType(
171
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
172
  }
173

174 175 176 177 178 179 180 181 182 183 184
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
W
whs 已提交
185 186 187
  }
};

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
    auto not_decrease = boost::get<std::vector<int>>(decrease_axis).size() == 0;
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
207 208 209
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
235 236 237 238 239 240 241
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
242 243 244 245 246
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
247
    AddAttr<std::vector<int>>(
248 249
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
250 251
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
252 253
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
254 255
        .SetDefault(false)
        .AsExtra();
256 257 258 259
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
Z
Zuza 已提交
260
        .InEnum({"float32", "int8", "bfloat16"})
261
        .AsExtra();
W
whs 已提交
262 263 264 265 266
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
267
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
268
end dimension for each axis in the list of axes, it uses this information
269 270
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
271
of that dimension. If the value passed to start or end is larger than
272 273
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
274
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
275 276
Following examples will explain how slice works:

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
295 296 297 298
)DOC");
  }
};

299 300 301 302
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

303
  void InferShape(framework::InferShapeContext *ctx) const override {
T
Thunderbrook 已提交
304 305 306
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::InvalidArgument("Input should not be null"));
307
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
T
Thunderbrook 已提交
308 309
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null"));
310 311 312 313 314 315 316 317
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
318 319 320 321 322 323
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
324

325
  framework::OpKernelType GetExpectedKernelType(
326
      const framework::ExecutionContext &ctx) const override {
327 328 329 330 331 332 333 334 335 336
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      // OneDNN uses blocking format, which cannot be always supported with
      // reorders, because if blocked dimension is not divisible by 8 or
      // 16(depending on which blocking format is used) submemory cannot be
      // created, so in that scenario a fallback is needed
      auto tmp_md = dnnl::memory::desc(
337
          phi::vectorize(
338 339 340 341 342 343 344 345 346 347
              ctx.Input<Tensor>(framework::GradVarName("Out"))->dims()),
          dnnl::memory::data_type::f32,
          ctx.Input<Tensor>(framework::GradVarName("Out"))->format());
      if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
        return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
348
  }
349

350 351 352 353 354 355 356 357 358 359 360
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
361
  }
362 363
};

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
379 380
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
381
 public:
H
hong 已提交
382
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
383 384

 protected:
385
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
386
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
387 388 389 390 391 392 393 394 395 396 397 398
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
399 400 401
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
402 403 404 405
    bind->SetType("slice_grad");
  }
};

406 407 408 409 410 411
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
412
  void Apply(GradOpPtr<T> bind) const override {
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

432
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
433
                                    "Input");
434

W
whs 已提交
435 436 437 438 439
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
H
hong 已提交
440
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
441 442
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
443
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
444 445
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
446
                  ops::SliceOpGradNoNeedBufferVarsInferer,
447
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
448 449

REGISTER_OP_CPU_KERNEL(
W
WeiXin 已提交
450 451
    slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
W
whs 已提交
452 453
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
454 455
    ops::SliceKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
456
                     paddle::platform::complex<float>>,
457
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
458 459 460
                     paddle::platform::complex<double>>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
                     paddle::platform::bfloat16>);
461 462

REGISTER_OP_CPU_KERNEL(
W
WeiXin 已提交
463 464
    slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
465 466
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
467 468
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
469
                         paddle::platform::complex<float>>,
470
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
471 472 473
                         paddle::platform::complex<double>>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::bfloat16>);
474 475

REGISTER_OP_CUDA_KERNEL(
W
WeiXin 已提交
476 477
    slice, ops::SliceKernel<paddle::platform::CUDADeviceContext, bool>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, float>,
478 479 480 481 482
    ops::SliceKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>,
483 484
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::bfloat16>,
485
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
486
                     paddle::platform::complex<float>>,
487
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
488
                     paddle::platform::complex<double>>);
489 490

REGISTER_OP_CUDA_KERNEL(
W
WeiXin 已提交
491
    slice_grad, ops::SliceGradKernel<paddle::platform::CUDADeviceContext, bool>,
492 493 494 495 496 497
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>,
498 499
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::bfloat16>,
500
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
501
                         paddle::platform::complex<float>>,
502
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
503
                         paddle::platform::complex<double>>);