slice_op.cc 19.5 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
#include <algorithm>
17
#include <memory>
18
#include <string>
W
whs 已提交
19 20 21 22 23 24 25 26 27 28 29
#include <vector>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

30
  void InferShape(framework::InferShapeContext *ctx) const override {
31 32
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "slice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "slice");
33

34
    // Case 1: Special treatment when input is a tensor array.
35 36 37 38 39 40 41 42 43 44 45 46 47 48
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      PADDLE_ENFORCE_EQ(axes.size(), 1,
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
49 50
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
51 52 53 54 55 56
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
57 58

    // Case 2: input is a tensor.
W
whs 已提交
59
    auto in_dims = ctx->GetInputDim("Input");
60
    PADDLE_ENFORCE_LT(in_dims.size(), 7,
T
Thunderbrook 已提交
61 62
                      platform::errors::InvalidArgument(
                          "The rank of input should be less than 7."));
W
whs 已提交
63
    framework::DDim out_dims(in_dims);
64

W
whs 已提交
65 66
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
H
Hongyu Liu 已提交
67
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
68
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
69 70 71 72 73 74
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

75 76 77 78
    // 2.1 Check attrs.
    auto starts_size = starts.size();
    auto ends_size = ends.size();

79
    if (ctx->HasInputs("StartsTensorList")) {
80 81
      starts_size = ctx->Inputs("StartsTensorList").size();
      PADDLE_ENFORCE_GT(starts_size, 0,
T
Thunderbrook 已提交
82 83
                        platform::errors::InvalidArgument(
                            "StartsTensorList size can't be zero"));
84 85
    }
    if (ctx->HasInputs("EndsTensorList")) {
86 87 88
      ends_size = ctx->Inputs("EndsTensorList").size();
      PADDLE_ENFORCE_GT(ends_size, 0, platform::errors::InvalidArgument(
                                          "EndsTensorList size can't be zero"));
89 90
    }

91
    if (!ctx->HasInput("StartsTensor")) {
92 93
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
T
Thunderbrook 已提交
94 95
          platform::errors::InvalidArgument(
              "The size of starts must be equal to the size of axes."));
96
    }
97
    if (!ctx->HasInput("EndsTensor")) {
T
Thunderbrook 已提交
98 99 100 101
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends must be equal to the size of axes."));
102 103
    }

104 105
    CheckAndUpdateSliceAttrs<int>(in_dims, axes, &starts, &ends, nullptr,
                                  &infer_flags);
H
Hongyu Liu 已提交
106

107 108 109 110 111 112
    auto slice_dims =
        GetSliceDims<int>(in_dims, axes, starts, ends, nullptr, &infer_flags);
    if (ctx->IsRuntime()) {
      out_dims = GetDecreasedDims<int>(slice_dims, decrease_axis, &infer_flags);
    } else {
      out_dims = GetDecreasedDims<int>(slice_dims, decrease_axis, nullptr);
H
Hongyu Liu 已提交
113
    }
114

W
whs 已提交
115
    ctx->SetOutputDim("Out", out_dims);
116
    if (axes.size() > 0 && axes[0] != 0) {
J
jerrywgz 已提交
117 118
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
119 120 121 122
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
123
      const framework::ExecutionContext &ctx) const override {
124 125 126 127 128 129 130
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
          in_tensor.IsInitialized(), true,
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
131 132 133 134
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
        return framework::OpKernelType(in_tensor.type(), ctx.device_context());
      }
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

#ifdef PADDLE_WITH_MKLDNN
      auto input_data_type =
          framework::OperatorWithKernel::IndicateVarDataType(ctx, "Input");

      if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
        // OneDNN uses blocking format, which cannot be always supported with
        // reorders, because if blocked dimension is not divisible by 8 or
        // 16(depending on which blocking format is used) submemory cannot be
        // created, so in that scenario a fallback is needed
        auto tmp_md = dnnl::memory::desc(
            framework::vectorize(ctx.Input<Tensor>("Input")->dims()),
            dnnl::memory::data_type::f32, ctx.Input<Tensor>("Input")->format());
        if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
          return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                         framework::DataLayout::kMKLDNN,
                                         framework::LibraryType::kMKLDNN);
      }
#endif

155 156
      return framework::OpKernelType(in_tensor.type(), in_tensor.place());
    }
157
    return framework::OpKernelType(
158
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
159
  }
160

161 162 163 164 165 166 167 168 169 170 171
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
W
whs 已提交
172 173 174
  }
};

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
    auto not_decrease = boost::get<std::vector<int>>(decrease_axis).size() == 0;
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
194 195 196
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
222 223 224 225 226 227 228
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
229 230 231 232 233
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
234
    AddAttr<std::vector<int>>(
235 236
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
237 238
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
239 240 241 242 243 244 245 246
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
W
whs 已提交
247 248 249 250 251
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
252
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
253
end dimension for each axis in the list of axes, it uses this information
254 255
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
256
of that dimension. If the value passed to start or end is larger than
257 258
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
259
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
260 261
Following examples will explain how slice works:

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
280 281 282 283
)DOC");
  }
};

284 285 286 287
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

288
  void InferShape(framework::InferShapeContext *ctx) const override {
T
Thunderbrook 已提交
289 290 291
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::InvalidArgument("Input should not be null"));
292
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
T
Thunderbrook 已提交
293 294
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null"));
295 296 297 298 299 300 301 302
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
303 304 305 306 307 308
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
309

310
  framework::OpKernelType GetExpectedKernelType(
311
      const framework::ExecutionContext &ctx) const override {
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      // OneDNN uses blocking format, which cannot be always supported with
      // reorders, because if blocked dimension is not divisible by 8 or
      // 16(depending on which blocking format is used) submemory cannot be
      // created, so in that scenario a fallback is needed
      auto tmp_md = dnnl::memory::desc(
          framework::vectorize(
              ctx.Input<Tensor>(framework::GradVarName("Out"))->dims()),
          dnnl::memory::data_type::f32,
          ctx.Input<Tensor>(framework::GradVarName("Out"))->format());
      if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
        return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
333
  }
334

335 336 337 338 339 340 341 342 343 344 345
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
346
  }
347 348
};

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
364 365
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
366
 public:
H
hong 已提交
367
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
368 369

 protected:
370
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
371
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
372 373 374 375 376 377 378 379 380 381 382 383
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
384 385 386
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
387 388 389 390
    bind->SetType("slice_grad");
  }
};

391 392 393 394 395 396
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
397
  void Apply(GradOpPtr<T> bind) const override {
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

417
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
418
                                    "Input");
419

W
whs 已提交
420 421 422 423 424
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
H
hong 已提交
425
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
426 427
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
428
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
429 430
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
431
                  ops::SliceOpGradNoNeedBufferVarsInferer,
432
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
433 434 435 436 437

REGISTER_OP_CPU_KERNEL(
    slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
438 439
    ops::SliceKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
440
                     paddle::platform::complex<float>>,
441
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
442
                     paddle::platform::complex<double>>);
443 444 445 446 447

REGISTER_OP_CPU_KERNEL(
    slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
448 449
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
450
                         paddle::platform::complex<float>>,
451
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
452
                         paddle::platform::complex<double>>);
453 454 455 456 457 458 459 460 461

REGISTER_OP_CUDA_KERNEL(
    slice, ops::SliceKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
462
                     paddle::platform::complex<float>>,
463
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
464
                     paddle::platform::complex<double>>);
465 466 467 468 469 470 471 472 473 474

REGISTER_OP_CUDA_KERNEL(
    slice_grad,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
475
                         paddle::platform::complex<float>>,
476
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
477
                         paddle::platform::complex<double>>);