slice_op.cc 20.5 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
16

W
whs 已提交
17
#include <algorithm>
18
#include <memory>
19
#include <string>
W
whs 已提交
20
#include <vector>
21

H
hong 已提交
22
#include "paddle/phi/kernels/funcs/slice_utils.h"
W
whs 已提交
23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
34 35
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "slice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "slice");
36

37
    // Case 1: Special treatment when input is a tensor array.
38 39 40 41 42 43 44 45 46 47 48 49 50 51
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      PADDLE_ENFORCE_EQ(axes.size(), 1,
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
52 53
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
54 55 56 57 58 59
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
60 61

    // Case 2: input is a tensor.
W
whs 已提交
62
    auto in_dims = ctx->GetInputDim("Input");
63
    PADDLE_ENFORCE_LT(in_dims.size(), 7,
T
Thunderbrook 已提交
64 65
                      platform::errors::InvalidArgument(
                          "The rank of input should be less than 7."));
W
whs 已提交
66
    framework::DDim out_dims(in_dims);
67

W
whs 已提交
68 69
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
H
Hongyu Liu 已提交
70
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
71
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
72 73 74 75 76 77
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

78 79 80 81
    // 2.1 Check attrs.
    auto starts_size = starts.size();
    auto ends_size = ends.size();

82
    if (ctx->HasInputs("StartsTensorList")) {
83 84
      starts_size = ctx->Inputs("StartsTensorList").size();
      PADDLE_ENFORCE_GT(starts_size, 0,
T
Thunderbrook 已提交
85 86
                        platform::errors::InvalidArgument(
                            "StartsTensorList size can't be zero"));
87 88
    }
    if (ctx->HasInputs("EndsTensorList")) {
89
      ends_size = ctx->Inputs("EndsTensorList").size();
90 91 92
      PADDLE_ENFORCE_GT(ends_size, 0,
                        platform::errors::InvalidArgument(
                            "EndsTensorList size can't be zero"));
93 94
    }

95
    if (!ctx->HasInput("StartsTensor")) {
96 97
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
T
Thunderbrook 已提交
98 99
          platform::errors::InvalidArgument(
              "The size of starts must be equal to the size of axes."));
100
    }
101
    if (!ctx->HasInput("EndsTensor")) {
T
Thunderbrook 已提交
102 103 104 105
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends must be equal to the size of axes."));
106 107
    }

H
hong 已提交
108 109
    phi::funcs::CheckAndUpdateSliceAttrs<int>(in_dims, axes, &starts, &ends,
                                              nullptr, &infer_flags);
H
Hongyu Liu 已提交
110

H
hong 已提交
111 112
    auto slice_dims = phi::funcs::GetSliceDims<int>(in_dims, axes, starts, ends,
                                                    nullptr, &infer_flags);
113
    if (ctx->IsRuntime()) {
H
hong 已提交
114 115
      out_dims = phi::funcs::GetDecreasedDims<int>(slice_dims, decrease_axis,
                                                   &infer_flags);
116
    } else {
H
hong 已提交
117 118
      out_dims =
          phi::funcs::GetDecreasedDims<int>(slice_dims, decrease_axis, nullptr);
H
Hongyu Liu 已提交
119
    }
120

W
whs 已提交
121
    ctx->SetOutputDim("Out", out_dims);
122
    if (axes.size() > 0 && axes[0] != 0) {
J
jerrywgz 已提交
123 124
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
125 126 127 128
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
129
      const framework::ExecutionContext &ctx) const override {
130 131 132 133 134 135 136
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
          in_tensor.IsInitialized(), true,
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
137 138
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
139 140 141
        return framework::OpKernelType(
            framework::TransToProtoVarType(in_tensor.dtype()),
            ctx.device_context());
142
      }
143 144 145 146 147 148 149 150 151 152 153

#ifdef PADDLE_WITH_MKLDNN
      auto input_data_type =
          framework::OperatorWithKernel::IndicateVarDataType(ctx, "Input");

      if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
        // OneDNN uses blocking format, which cannot be always supported with
        // reorders, because if blocked dimension is not divisible by 8 or
        // 16(depending on which blocking format is used) submemory cannot be
        // created, so in that scenario a fallback is needed
        auto tmp_md = dnnl::memory::desc(
154
            phi::vectorize(ctx.Input<Tensor>("Input")->dims()),
155 156 157 158 159 160 161 162
            dnnl::memory::data_type::f32, ctx.Input<Tensor>("Input")->format());
        if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
          return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                         framework::DataLayout::kMKLDNN,
                                         framework::LibraryType::kMKLDNN);
      }
#endif

163 164
      return framework::OpKernelType(
          framework::TransToProtoVarType(in_tensor.dtype()), in_tensor.place());
165
    }
166
    return framework::OpKernelType(
167
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
168
  }
169

170 171 172 173 174 175 176 177 178 179 180
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
W
whs 已提交
181 182 183
  }
};

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
    auto not_decrease = boost::get<std::vector<int>>(decrease_axis).size() == 0;
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
203 204 205
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
231 232 233 234 235 236 237
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
238 239 240 241 242
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
243
    AddAttr<std::vector<int>>(
244 245
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
246 247
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
248 249
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
250 251
        .SetDefault(false)
        .AsExtra();
252 253 254 255
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
Z
Zuza 已提交
256
        .InEnum({"float32", "int8", "bfloat16"})
257
        .AsExtra();
W
whs 已提交
258 259 260 261 262
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
263
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
264
end dimension for each axis in the list of axes, it uses this information
265 266
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
267
of that dimension. If the value passed to start or end is larger than
268 269
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
270
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
271 272
Following examples will explain how slice works:

273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
291 292 293 294
)DOC");
  }
};

295 296 297 298
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

299
  void InferShape(framework::InferShapeContext *ctx) const override {
T
Thunderbrook 已提交
300 301 302
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::InvalidArgument("Input should not be null"));
303
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
T
Thunderbrook 已提交
304 305
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null"));
306 307 308 309 310 311 312 313
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
314 315 316 317 318 319
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
320

321
  framework::OpKernelType GetExpectedKernelType(
322
      const framework::ExecutionContext &ctx) const override {
323 324 325 326 327 328 329 330 331 332
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      // OneDNN uses blocking format, which cannot be always supported with
      // reorders, because if blocked dimension is not divisible by 8 or
      // 16(depending on which blocking format is used) submemory cannot be
      // created, so in that scenario a fallback is needed
      auto tmp_md = dnnl::memory::desc(
333
          phi::vectorize(
334 335 336 337 338 339 340 341 342 343
              ctx.Input<Tensor>(framework::GradVarName("Out"))->dims()),
          dnnl::memory::data_type::f32,
          ctx.Input<Tensor>(framework::GradVarName("Out"))->format());
      if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
        return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
344
  }
345

346 347 348 349 350 351 352 353 354 355 356
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
357
  }
358 359
};

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
375 376
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
377
 public:
H
hong 已提交
378
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
379 380

 protected:
381
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
382
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
383 384 385 386 387 388 389 390 391 392 393 394
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
395 396 397
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
398 399 400 401
    bind->SetType("slice_grad");
  }
};

402 403 404 405 406 407
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
408
  void Apply(GradOpPtr<T> bind) const override {
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

428
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
429
                                    "Input");
430

W
whs 已提交
431 432 433 434 435
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
H
hong 已提交
436
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
437 438
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
439
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
440 441
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
442
                  ops::SliceOpGradNoNeedBufferVarsInferer,
443
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
444 445

REGISTER_OP_CPU_KERNEL(
W
WeiXin 已提交
446 447
    slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
W
whs 已提交
448 449
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
450 451
    ops::SliceKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
452
                     paddle::platform::complex<float>>,
453
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
454 455 456
                     paddle::platform::complex<double>>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
                     paddle::platform::bfloat16>);
457 458

REGISTER_OP_CPU_KERNEL(
W
WeiXin 已提交
459 460
    slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
461 462
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
463 464
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
465
                         paddle::platform::complex<float>>,
466
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
467 468 469
                         paddle::platform::complex<double>>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::bfloat16>);
470 471

REGISTER_OP_CUDA_KERNEL(
W
WeiXin 已提交
472 473
    slice, ops::SliceKernel<paddle::platform::CUDADeviceContext, bool>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, float>,
474 475 476 477 478
    ops::SliceKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>,
479 480
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::bfloat16>,
481
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
482
                     paddle::platform::complex<float>>,
483
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
484
                     paddle::platform::complex<double>>);
485 486

REGISTER_OP_CUDA_KERNEL(
W
WeiXin 已提交
487
    slice_grad, ops::SliceGradKernel<paddle::platform::CUDADeviceContext, bool>,
488 489 490 491 492 493
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>,
494 495
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::bfloat16>,
496
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
497
                         paddle::platform::complex<float>>,
498
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
499
                         paddle::platform::complex<double>>);