slice_op.cc 17.3 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
#include <algorithm>
17
#include <memory>
18
#include <string>
W
whs 已提交
19 20 21 22 23 24 25 26 27 28 29
#include <vector>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

30
  void InferShape(framework::InferShapeContext *ctx) const override {
31 32
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "slice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "slice");
33

34
    // Case 1: Special treatment when input is a tensor array.
35 36 37 38 39 40 41 42 43 44 45 46 47 48
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      PADDLE_ENFORCE_EQ(axes.size(), 1,
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
49 50
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
51 52 53 54 55 56
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
57 58

    // Case 2: input is a tensor.
W
whs 已提交
59
    auto in_dims = ctx->GetInputDim("Input");
60
    PADDLE_ENFORCE_LT(in_dims.size(), 7,
T
Thunderbrook 已提交
61 62
                      platform::errors::InvalidArgument(
                          "The rank of input should be less than 7."));
W
whs 已提交
63
    framework::DDim out_dims(in_dims);
64

W
whs 已提交
65 66
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
H
Hongyu Liu 已提交
67
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
68
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
69 70 71 72 73 74
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

75 76 77 78
    // 2.1 Check attrs.
    auto starts_size = starts.size();
    auto ends_size = ends.size();

79
    if (ctx->HasInputs("StartsTensorList")) {
80 81
      starts_size = ctx->Inputs("StartsTensorList").size();
      PADDLE_ENFORCE_GT(starts_size, 0,
T
Thunderbrook 已提交
82 83
                        platform::errors::InvalidArgument(
                            "StartsTensorList size can't be zero"));
84 85
    }
    if (ctx->HasInputs("EndsTensorList")) {
86 87 88
      ends_size = ctx->Inputs("EndsTensorList").size();
      PADDLE_ENFORCE_GT(ends_size, 0, platform::errors::InvalidArgument(
                                          "EndsTensorList size can't be zero"));
89 90
    }

91
    if (!ctx->HasInput("StartsTensor")) {
92 93
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
T
Thunderbrook 已提交
94 95
          platform::errors::InvalidArgument(
              "The size of starts must be equal to the size of axes."));
96
    }
97
    if (!ctx->HasInput("EndsTensor")) {
T
Thunderbrook 已提交
98 99 100 101
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends must be equal to the size of axes."));
102 103
    }

104 105
    CheckAndUpdateSliceAttrs<int>(in_dims, axes, &starts, &ends, nullptr,
                                  &infer_flags);
H
Hongyu Liu 已提交
106

107 108 109 110 111 112
    auto slice_dims =
        GetSliceDims<int>(in_dims, axes, starts, ends, nullptr, &infer_flags);
    if (ctx->IsRuntime()) {
      out_dims = GetDecreasedDims<int>(slice_dims, decrease_axis, &infer_flags);
    } else {
      out_dims = GetDecreasedDims<int>(slice_dims, decrease_axis, nullptr);
H
Hongyu Liu 已提交
113
    }
114

W
whs 已提交
115
    ctx->SetOutputDim("Out", out_dims);
116
    if (axes.size() > 0 && axes[0] != 0) {
J
jerrywgz 已提交
117 118
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
119 120 121 122
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
123
      const framework::ExecutionContext &ctx) const override {
124 125 126 127 128 129 130
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
          in_tensor.IsInitialized(), true,
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
131 132 133 134
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
        return framework::OpKernelType(in_tensor.type(), ctx.device_context());
      }
135 136
      return framework::OpKernelType(in_tensor.type(), in_tensor.place());
    }
137
    return framework::OpKernelType(
138
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
139
  }
140

141 142 143 144 145 146 147 148 149 150 151
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
W
whs 已提交
152 153 154
  }
};

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
    auto not_decrease = boost::get<std::vector<int>>(decrease_axis).size() == 0;
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
174 175 176
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
202 203 204 205 206 207 208
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
209 210 211 212 213
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
214
    AddAttr<std::vector<int>>(
215 216
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
217 218
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
W
whs 已提交
219 220 221 222 223
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
224
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
225
end dimension for each axis in the list of axes, it uses this information
226 227
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
228
of that dimension. If the value passed to start or end is larger than
229 230
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
231
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
232 233
Following examples will explain how slice works:

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
252 253 254 255
)DOC");
  }
};

256 257 258 259
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

260
  void InferShape(framework::InferShapeContext *ctx) const override {
T
Thunderbrook 已提交
261 262 263
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::InvalidArgument("Input should not be null"));
264
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
T
Thunderbrook 已提交
265 266
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null"));
267 268 269 270 271 272 273 274
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
275 276 277 278 279 280
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
281
  framework::OpKernelType GetExpectedKernelType(
282
      const framework::ExecutionContext &ctx) const override {
283 284 285
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
286 287 288 289 290 291 292 293 294 295 296 297
  }
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
298
  }
299 300
};

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
316 317
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
318
 public:
H
hong 已提交
319
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
320 321

 protected:
322
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
323
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
324 325 326 327 328 329 330 331 332 333 334 335
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
336 337 338
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
339 340 341 342
    bind->SetType("slice_grad");
  }
};

343 344 345 346 347 348
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
349
  void Apply(GradOpPtr<T> bind) const override {
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

369
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
370
                                    "Input");
371

W
whs 已提交
372 373 374 375 376
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
H
hong 已提交
377
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
378 379
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
380
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
381 382
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
383
                  ops::SliceOpGradNoNeedBufferVarsInferer,
384
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
385 386 387 388 389

REGISTER_OP_CPU_KERNEL(
    slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
390 391
    ops::SliceKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
392
                     paddle::platform::complex<float>>,
393
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
394
                     paddle::platform::complex<double>>);
395 396 397 398 399

REGISTER_OP_CPU_KERNEL(
    slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
400 401
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
402
                         paddle::platform::complex<float>>,
403
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
404
                         paddle::platform::complex<double>>);
405 406 407 408 409 410 411 412 413

REGISTER_OP_CUDA_KERNEL(
    slice, ops::SliceKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
414
                     paddle::platform::complex<float>>,
415
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
416
                     paddle::platform::complex<double>>);
417 418 419 420 421 422 423 424 425 426

REGISTER_OP_CUDA_KERNEL(
    slice_grad,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
427
                         paddle::platform::complex<float>>,
428
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
429
                         paddle::platform::complex<double>>);