slice_op.cc 20.5 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
#include <algorithm>
17
#include <memory>
18
#include <string>
W
whs 已提交
19
#include <vector>
H
hong 已提交
20
#include "paddle/phi/kernels/funcs/slice_utils.h"
W
whs 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

31
  void InferShape(framework::InferShapeContext *ctx) const override {
32 33
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "slice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "slice");
34

35
    // Case 1: Special treatment when input is a tensor array.
36 37 38 39 40 41 42 43 44 45 46 47 48 49
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      PADDLE_ENFORCE_EQ(axes.size(), 1,
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
50 51
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
52 53 54 55 56 57
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
58 59

    // Case 2: input is a tensor.
W
whs 已提交
60
    auto in_dims = ctx->GetInputDim("Input");
61
    PADDLE_ENFORCE_LT(in_dims.size(), 7,
T
Thunderbrook 已提交
62 63
                      platform::errors::InvalidArgument(
                          "The rank of input should be less than 7."));
W
whs 已提交
64
    framework::DDim out_dims(in_dims);
65

W
whs 已提交
66 67
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
H
Hongyu Liu 已提交
68
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
69
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
70 71 72 73 74 75
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

76 77 78 79
    // 2.1 Check attrs.
    auto starts_size = starts.size();
    auto ends_size = ends.size();

80
    if (ctx->HasInputs("StartsTensorList")) {
81 82
      starts_size = ctx->Inputs("StartsTensorList").size();
      PADDLE_ENFORCE_GT(starts_size, 0,
T
Thunderbrook 已提交
83 84
                        platform::errors::InvalidArgument(
                            "StartsTensorList size can't be zero"));
85 86
    }
    if (ctx->HasInputs("EndsTensorList")) {
87 88 89
      ends_size = ctx->Inputs("EndsTensorList").size();
      PADDLE_ENFORCE_GT(ends_size, 0, platform::errors::InvalidArgument(
                                          "EndsTensorList size can't be zero"));
90 91
    }

92
    if (!ctx->HasInput("StartsTensor")) {
93 94
      PADDLE_ENFORCE_EQ(
          starts_size, axes.size(),
T
Thunderbrook 已提交
95 96
          platform::errors::InvalidArgument(
              "The size of starts must be equal to the size of axes."));
97
    }
98
    if (!ctx->HasInput("EndsTensor")) {
T
Thunderbrook 已提交
99 100 101 102
      PADDLE_ENFORCE_EQ(
          ends_size, axes.size(),
          platform::errors::InvalidArgument(
              "The size of ends must be equal to the size of axes."));
103 104
    }

H
hong 已提交
105 106
    phi::funcs::CheckAndUpdateSliceAttrs<int>(in_dims, axes, &starts, &ends,
                                              nullptr, &infer_flags);
H
Hongyu Liu 已提交
107

H
hong 已提交
108 109
    auto slice_dims = phi::funcs::GetSliceDims<int>(in_dims, axes, starts, ends,
                                                    nullptr, &infer_flags);
110
    if (ctx->IsRuntime()) {
H
hong 已提交
111 112
      out_dims = phi::funcs::GetDecreasedDims<int>(slice_dims, decrease_axis,
                                                   &infer_flags);
113
    } else {
H
hong 已提交
114 115
      out_dims =
          phi::funcs::GetDecreasedDims<int>(slice_dims, decrease_axis, nullptr);
H
Hongyu Liu 已提交
116
    }
117

W
whs 已提交
118
    ctx->SetOutputDim("Out", out_dims);
119
    if (axes.size() > 0 && axes[0] != 0) {
J
jerrywgz 已提交
120 121
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
122 123 124 125
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
126
      const framework::ExecutionContext &ctx) const override {
127 128 129 130 131 132 133
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
          in_tensor.IsInitialized(), true,
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
134 135
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
136 137 138
        return framework::OpKernelType(
            framework::TransToProtoVarType(in_tensor.dtype()),
            ctx.device_context());
139
      }
140 141 142 143 144 145 146 147 148 149 150

#ifdef PADDLE_WITH_MKLDNN
      auto input_data_type =
          framework::OperatorWithKernel::IndicateVarDataType(ctx, "Input");

      if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
        // OneDNN uses blocking format, which cannot be always supported with
        // reorders, because if blocked dimension is not divisible by 8 or
        // 16(depending on which blocking format is used) submemory cannot be
        // created, so in that scenario a fallback is needed
        auto tmp_md = dnnl::memory::desc(
151
            phi::vectorize(ctx.Input<Tensor>("Input")->dims()),
152 153 154 155 156 157 158 159
            dnnl::memory::data_type::f32, ctx.Input<Tensor>("Input")->format());
        if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
          return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                         framework::DataLayout::kMKLDNN,
                                         framework::LibraryType::kMKLDNN);
      }
#endif

160 161
      return framework::OpKernelType(
          framework::TransToProtoVarType(in_tensor.dtype()), in_tensor.place());
162
    }
163
    return framework::OpKernelType(
164
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
165
  }
166

167 168 169 170 171 172 173 174 175 176 177
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
W
whs 已提交
178 179 180
  }
};

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
    auto not_decrease = boost::get<std::vector<int>>(decrease_axis).size() == 0;
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
200 201 202
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
228 229 230 231 232 233 234
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
235 236 237 238 239
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
240
    AddAttr<std::vector<int>>(
241 242
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
243 244
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
245 246
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
247 248
        .SetDefault(false)
        .AsExtra();
249 250 251 252
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
Z
Zuza 已提交
253
        .InEnum({"float32", "int8", "bfloat16"})
254
        .AsExtra();
W
whs 已提交
255 256 257 258 259
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
260
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
261
end dimension for each axis in the list of axes, it uses this information
262 263
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
264
of that dimension. If the value passed to start or end is larger than
265 266
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
267
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
268 269
Following examples will explain how slice works:

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
288 289 290 291
)DOC");
  }
};

292 293 294 295
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

296
  void InferShape(framework::InferShapeContext *ctx) const override {
T
Thunderbrook 已提交
297 298 299
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Input"), true,
        platform::errors::InvalidArgument("Input should not be null"));
300
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
T
Thunderbrook 已提交
301 302
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null"));
303 304 305 306 307 308 309 310
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
311 312 313 314 315 316
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
317

318
  framework::OpKernelType GetExpectedKernelType(
319
      const framework::ExecutionContext &ctx) const override {
320 321 322 323 324 325 326 327 328 329
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      // OneDNN uses blocking format, which cannot be always supported with
      // reorders, because if blocked dimension is not divisible by 8 or
      // 16(depending on which blocking format is used) submemory cannot be
      // created, so in that scenario a fallback is needed
      auto tmp_md = dnnl::memory::desc(
330
          phi::vectorize(
331 332 333 334 335 336 337 338 339 340
              ctx.Input<Tensor>(framework::GradVarName("Out"))->dims()),
          dnnl::memory::data_type::f32,
          ctx.Input<Tensor>(framework::GradVarName("Out"))->format());
      if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
        return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
341
  }
342

343 344 345 346 347 348 349 350 351 352 353
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
354
  }
355 356
};

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
372 373
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
374
 public:
H
hong 已提交
375
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
376 377

 protected:
378
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
379
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
380 381 382 383 384 385 386 387 388 389 390 391
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
392 393 394
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
395 396 397 398
    bind->SetType("slice_grad");
  }
};

399 400 401 402 403 404
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
405
  void Apply(GradOpPtr<T> bind) const override {
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

425
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
426
                                    "Input");
427

W
whs 已提交
428 429 430 431 432
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(slice, ops::SliceOp, ops::SliceOpMaker,
H
hong 已提交
433
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
434 435
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
436
REGISTER_OPERATOR(slice_grad, ops::SliceOpGrad,
437 438
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
439
                  ops::SliceOpGradNoNeedBufferVarsInferer,
440
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
441 442

REGISTER_OP_CPU_KERNEL(
W
WeiXin 已提交
443 444
    slice, ops::SliceKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int>,
W
whs 已提交
445 446
    ops::SliceKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext, float>,
447 448
    ops::SliceKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
449
                     paddle::platform::complex<float>>,
450
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
451 452 453
                     paddle::platform::complex<double>>,
    ops::SliceKernel<paddle::platform::CPUDeviceContext,
                     paddle::platform::bfloat16>);
454 455

REGISTER_OP_CPU_KERNEL(
W
WeiXin 已提交
456 457
    slice_grad, ops::SliceGradKernel<paddle::platform::CPUDeviceContext, bool>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int>,
458 459
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, float>,
460 461
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
462
                         paddle::platform::complex<float>>,
463
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
464 465 466
                         paddle::platform::complex<double>>,
    ops::SliceGradKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::bfloat16>);
467 468

REGISTER_OP_CUDA_KERNEL(
W
WeiXin 已提交
469 470
    slice, ops::SliceKernel<paddle::platform::CUDADeviceContext, bool>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, float>,
471 472 473 474 475
    ops::SliceKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::float16>,
476 477
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
                     paddle::platform::bfloat16>,
478
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
479
                     paddle::platform::complex<float>>,
480
    ops::SliceKernel<paddle::platform::CUDADeviceContext,
481
                     paddle::platform::complex<double>>);
482 483

REGISTER_OP_CUDA_KERNEL(
W
WeiXin 已提交
484
    slice_grad, ops::SliceGradKernel<paddle::platform::CUDADeviceContext, bool>,
485 486 487 488 489 490
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::float16>,
491 492
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
                         paddle::platform::bfloat16>,
493
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
494
                         paddle::platform::complex<float>>,
495
    ops::SliceGradKernel<paddle::platform::CUDADeviceContext,
496
                         paddle::platform::complex<double>>);