creation.py 77.8 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23 24
import warnings

import numpy as np

import paddle
from paddle import _C_ops, _legacy_C_ops
25
from paddle.common_ops_import import fill_constant
26

27 28
from ..fluid.data_feeder import (
    check_dtype,
29 30
    check_type,
    check_variable_and_dtype,
31 32 33 34
    convert_dtype,
)
from ..fluid.framework import (
    _in_eager_without_dygraph_check,
35
    _in_legacy_dygraph,
36
)
37 38 39 40 41 42 43 44 45 46 47
from ..fluid.layers import utils
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    _non_static_mode,
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
from ..static import Variable, device_guard
48

49 50
__all__ = []

W
wangchaochaohu 已提交
51

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


def linspace(start, stop, num, dtype=None, name=None):
    r"""
72
    Return fixed number of evenly spaced values within a given interval.
73 74

    Args:
75 76 77 78 79 80
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
81 82
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
83
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
84 85 86 87

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
88
        the value with input :attr:`start`.
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
109
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
110 111
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
112
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
113 114
    if not isinstance(num, Variable):
        with device_guard("cpu"):
115
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
116
    if in_dygraph_mode():
117 118 119 120 121 122 123
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
124
    if _in_legacy_dygraph():
125 126 127
        return _legacy_C_ops.linspace(
            tensor_start, tensor_stop, tensor_num, 'dtype', dtype
        )
128 129 130 131 132 133 134

    helper = LayerHelper("linspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
135 136 137 138 139 140
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
141 142 143 144
    else:
        check_type(start, 'start', (int, float), 'linspace')

    if isinstance(stop, Variable):
145 146 147 148 149 150
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'linspace',
        )
151 152 153 154
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
155 156 157 158 159 160 161 162 163 164
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'linspace'
    )
    if (
        (stop_dtype == "float64" or start_dtype == "float64")
        and out_dtype in ["float32", "int32"]
    ) or (
        (stop_dtype == "int64" or start_dtype == "int64")
        and out_dtype == "int32"
    ):
165 166
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
167 168 169 170
            "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                start_dtype, stop_dtype, dtype
            )
        )
171 172 173

    out = helper.create_variable_for_type_inference(dtype=dtype)

174 175 176 177 178 179
    helper.append_op(
        type='linspace',
        inputs={'Start': tensor_start, 'Stop': tensor_stop, 'Num': tensor_num},
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
180
    if isinstance(num, int):
181
        out.desc.set_shape((num,))
182 183 184
    return out


185 186 187 188
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
189

190 191
    Notes:
        This API does not compute the gradient.
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
207
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
208 209 210 211 212

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
213
        just has the value with exponential of :attr:`start` with base :attr:`base`.
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
    if _non_static_mode():
247 248 249
        return _legacy_C_ops.logspace(
            tensor_start, tensor_stop, tensor_num, tensor_base, 'dtype', dtype
        )
250 251 252 253 254 255 256 257

    helper = LayerHelper("logspace", **locals())

    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    base_dtype = convert_dtype(tensor_base.dtype)
    out_dtype = convert_dtype(dtype)
    if isinstance(start, Variable):
258 259 260 261 262 263
        check_dtype(
            start.dtype,
            'start',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
264 265 266 267
    else:
        check_type(start, 'start', (int, float), 'logspace')

    if isinstance(stop, Variable):
268 269 270 271 272 273
        check_dtype(
            stop.dtype,
            'stop',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
274 275 276 277 278 279 280
    else:
        check_type(stop, 'stop', (int, float), 'logspace')

    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'logspace')

    if isinstance(base, Variable):
281 282 283 284 285 286
        check_dtype(
            base.dtype,
            'base',
            ['float32', 'float64', 'int32', 'int64'],
            'logspace',
        )
287 288 289
    else:
        check_type(base, 'base', (int, float), 'logspace')

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    check_dtype(
        dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
    )
    if (
        (
            stop_dtype == "float64"
            or start_dtype == "float64"
            or base_dtype == "float64"
        )
        and out_dtype in ["float32", "int32"]
    ) or (
        (
            stop_dtype == "int64"
            or start_dtype == "int64"
            or base_dtype == "int64"
        )
        and out_dtype == "int32"
    ):
308 309
        raise ValueError(
            "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
310 311 312 313
            "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                start_dtype, stop_dtype, base_dtype, dtype
            )
        )
314 315 316

    out = helper.create_variable_for_type_inference(dtype=dtype)

317 318 319 320 321 322 323 324 325 326 327
    helper.append_op(
        type='logspace',
        inputs={
            'Start': tensor_start,
            'Stop': tensor_stop,
            'Num': tensor_num,
            'Base': tensor_base,
        },
        attrs={'dtype': dtype},
        outputs={'Out': [out]},
    )
328
    if isinstance(num, int):
329
        out.desc.set_shape((num,))
330 331 332
    return out


333
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
334 335

    if not isinstance(data, np.ndarray):
336

337
        def _handle_dtype(data, dtype):
338 339 340 341 342
            if dtype:
                if convert_dtype(dtype) != convert_dtype(data.dtype):
                    return data.astype(convert_dtype(dtype))
            return data

343 344 345 346
        if np.isscalar(data) and not isinstance(data, str):
            data = np.array([data])
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
347
            if data.dtype == np.object_:
348 349 350 351
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
W
wanghuancoder 已提交
352 353 354 355 356 357
        elif isinstance(data, paddle.Tensor) and not in_dygraph_mode():
            data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
            return data
        elif isinstance(data, core.eager.Tensor) and in_dygraph_mode():
358
            data = data._copy_to(place, False)
359
            data = _handle_dtype(data, dtype)
360
            data.stop_gradient = stop_gradient
361
            return data
362
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
363
            # should't expose it to users, just for internal use.
364 365
            # convert core.Tensor/core.LoDTensor to VarBase first
            # Currenly, there is no copy when places are same
W
wanghuancoder 已提交
366 367 368 369
            if in_dygraph_mode():
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
370 371 372 373
            if not data.place._equals(place):
                data = data._copy_to(place, False)
            data = _handle_dtype(data, dtype)
            data.stop_gradient = stop_gradient
374
            return data
375 376
        else:
            raise TypeError(
377 378 379 380
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
381 382
        if not dtype:
            if data.dtype in [
383 384 385 386 387
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
388 389 390
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
391 392 393 394 395
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
396 397 398 399 400
                data = data.astype(default_type)
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
                default_type = "int64"
                data = data.astype(default_type)
401 402

    if dtype and convert_dtype(dtype) != data.dtype:
403
        data = data.astype(convert_dtype(dtype))
404

J
Jiabin Yang 已提交
405
    if _in_eager_without_dygraph_check() and isinstance(data, np.ndarray):
406 407 408 409 410 411 412 413
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
414
    else:
415 416 417 418 419 420 421
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
422 423


424 425 426 427 428
def _to_tensor_static(data, dtype=None, stop_gradient=None):

    if isinstance(data, Variable) and (dtype is None or dtype == data.dtype):
        output = data
    else:
429 430 431 432 433 434 435

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
                data = np.array([data])
            elif isinstance(data, (list, tuple)):
                data = np.array(data)

436 437 438 439 440
            if (
                isinstance(data, np.ndarray)
                and not dtype
                and data.dtype != 'object'
            ):
441 442 443 444 445
                if data.dtype in ['float16', 'float32', 'float64']:
                    data = data.astype(paddle.get_default_dtype())
                elif data.dtype in ['int32']:
                    data = data.astype('int64')

446 447
        if dtype:
            target_dtype = dtype
448
        elif hasattr(data, 'dtype') and data.dtype != 'object':
449 450 451 452 453 454
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()

        target_dtype = convert_dtype(target_dtype)

455 456 457 458 459
        if (
            isinstance(data, np.ndarray)
            and len(data.shape) > 0
            and any(isinstance(x, Variable) for x in data)
        ):
460
            if not all(
461 462
                [x.shape == (1,) for x in data if isinstance(x, Variable)]
            ):
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                raise TypeError(
                    "Unsupport paddle.to_tensor([Variable, Variable...]) with non-scalar variable."
                )
            to_stack_list = [None] * data.shape[0]
            for idx, d in enumerate(data):
                to_stack_list[idx] = _to_tensor_static(d, dtype, stop_gradient)
            data = paddle.stack(to_stack_list)
            data = paddle.squeeze(data, -1)

        if not isinstance(data, Variable):
            output = assign(data)
        else:
            output = data
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


484 485
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
486
    Constructs a ``paddle.Tensor`` from ``data`` ,
487 488 489 490 491 492 493 494
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
495
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
496
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
497
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
498
            except for python float number which gets dtype from ``get_default_type`` .
499 500 501
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
502 503 504 505 506 507 508 509 510 511
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        [1])

        x = paddle.to_tensor(1, stop_gradient=False)
        print(x)
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        [1])

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
        # Tensor(shape=[1], dtype=int64, place=CPUPlace, stop_gradient=True,
527
        #        [1])
528 529 530 531 532 533 534 535 536 537 538 539 540 541

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
542 543 544 545
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

546 547 548 549 550
    if _non_static_mode():
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
551
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
552 553 554
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
555
            return _to_tensor_static(data, dtype, stop_gradient)
556 557


558
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
559
    """
S
swtkiwi 已提交
560

561 562
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
563

P
Pei Yang 已提交
564
    Args:
565 566
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
567
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
568
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
569
            data type is the same as input.
570
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
571

P
Pei Yang 已提交
572
    Returns:
573
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
574

P
Pei Yang 已提交
575 576
    Examples:
        .. code-block:: python
577

P
Pei Yang 已提交
578
          import paddle
579

580
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
581
          output = paddle.full_like(input, 2.0)
582 583
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
584 585 586
    """

    if dtype is None:
587
        dtype = x.dtype
588
    else:
589 590 591
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

592
    if in_dygraph_mode():
593
        return _C_ops.full_like(x, fill_value, dtype, x.place)
594 595

    if _in_legacy_dygraph():
596 597 598
        return _legacy_C_ops.fill_any_like(
            x, 'value', fill_value, 'dtype', dtype
        )
P
Pei Yang 已提交
599

600
    helper = LayerHelper("full_like", **locals())
601
    check_variable_and_dtype(
602 603
        x,
        'x',
604
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
605 606
        'full_like',
    )
607
    check_dtype(
608 609
        dtype,
        'dtype',
610
        ['bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64'],
611 612
        'full_like/zeros_like/ones_like',
    )
613
    out = helper.create_variable_for_type_inference(dtype=dtype)
614

615 616 617 618 619 620
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': fill_value, "dtype": dtype},
        outputs={'Out': [out]},
    )
621
    out.stop_gradient = True
P
Pei Yang 已提交
622 623 624
    return out


625
def ones(shape, dtype=None, name=None):
626
    """
B
BrilliantYuKaimin 已提交
627
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
628 629

    Args:
630 631 632
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
633 634 635
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
636

637
    Returns:
B
BrilliantYuKaimin 已提交
638
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
639 640 641 642

    Examples:
        .. code-block:: python

643
            import paddle
644

645
            # shape is a list/tuple
646
            data1 = paddle.ones(shape=[3, 2])
647 648 649 650 651
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
652 653 654 655 656 657 658 659 660 661 662 663
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
664
    """
665 666 667
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
668 669


670
def ones_like(x, dtype=None, name=None):
671
    """
C
Chen Long 已提交
672
    Returns a Tensor filled with the value 1, with the same shape and
673
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
674 675

    Args:
676 677
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
678
        dtype(str|np.dtype, optional): The data type of the
679 680 681
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
682
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
683

684
    Returns:
685 686 687
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

688 689 690
    Examples:
        .. code-block:: python

691
            import paddle
692

693
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
694 695
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
696

697 698
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
699 700


701
def zeros(shape, dtype=None, name=None):
702
    """
C
Chen Long 已提交
703
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
704 705

    Args:
706 707 708
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
709
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
710 711 712
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
713 714

    Returns:
715
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
716 717 718 719

    Examples:
        .. code-block:: python

720
            import paddle
721

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
741
    """
742 743 744
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
745 746


747
def zeros_like(x, dtype=None, name=None):
748
    """
749
    Returns a Tensor filled with the value 0, with the same shape and
750
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
751 752

    Args:
753 754
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
755
        dtype(str|np.dtype, optional): The data type of the
756 757 758
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
759
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
760 761

    Returns:
762 763
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
764

765

766 767 768
    Examples:
        .. code-block:: python

769
            import paddle
770

Z
zhupengyang 已提交
771
            x = paddle.to_tensor([1, 2, 3])
772 773
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
774

775 776
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
777 778


779
def eye(num_rows, num_columns=None, dtype=None, name=None):
780
    """
781

782
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
783

784
    Args:
785 786
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
787
            If None, default: num_rows.
W
wangchaochaohu 已提交
788
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
789 790
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
791
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
792

793
    Returns:
794
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
795

796 797
    Examples:
        .. code-block:: python
798

799
          import paddle
800

801
          data = paddle.eye(3, dtype='int32')
802 803 804
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
805
          data = paddle.eye(2, 3, dtype='int32')
806 807
          # [[1 0 0]
          #  [0 1 0]]
808 809
    """

810 811 812 813 814 815 816 817
    def _check_attr(attr, message):
        if isinstance(attr, ((Variable, core.VarBase, core.eager.Tensor))):
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
            raise TypeError("{} should be a non-negative int.".format(message))

    _check_attr(num_rows, "num_rows")

818 819
    if dtype is None:
        dtype = 'float32'
820 821 822
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
823
        _check_attr(num_columns, "num_columns")
824 825 826 827
    else:
        num_columns = num_rows

    if _non_static_mode():
828
        if in_dygraph_mode():
829 830 831
            out = _C_ops.eye(
                num_rows, num_columns, dtype, _current_expected_place()
            )
832
        elif _in_legacy_dygraph():
833 834 835
            out = _legacy_C_ops.eye(
                'dtype', dtype, 'num_rows', num_rows, 'num_columns', num_columns
            )
836 837 838

    else:
        helper = LayerHelper("eye", **locals())
839 840 841 842 843 844
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
845
        out = helper.create_variable_for_type_inference(dtype=dtype)
846 847 848 849 850 851 852 853 854 855 856
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
857 858 859

    out.stop_gradient = True
    return out
860 861


862
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
863
    """
S
swtkiwi 已提交
864

865
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
866

W
wangchaochaohu 已提交
867
    Args:
868 869 870 871 872
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
873
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
874
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
875 876
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
877

878
    Returns:
879
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
880

W
wangchaochaohu 已提交
881 882 883
    Examples:
        .. code-block:: python

884
            import paddle
W
wangchaochaohu 已提交
885

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
912 913 914 915 916
    """

    if dtype is None:
        dtype = 'float32'

917
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
918 919


920
def arange(start=0, end=None, step=1, dtype=None, name=None):
921
    """
922
    Returns a 1-D Tensor with spaced values within a given interval.
923

924 925
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
926

927 928
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
929 930

    Parameters:
931 932
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
933 934
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
935
        end(float|int|Tensor, optional): End of interval. The interval does not
936 937 938 939
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
940 941
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
942 943
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
944
        dtype(str|np.dtype, optional): The data type of the
945 946
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
947
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
948

949
    Returns:
950
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
951 952
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
953

Z
zhupengyang 已提交
954
    Examples:
955 956
        .. code-block:: python

Z
zhupengyang 已提交
957
            import paddle
958

Z
zhupengyang 已提交
959 960
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
961

Z
zhupengyang 已提交
962 963
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
964

Z
zhupengyang 已提交
965 966 967
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
968

969
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
970 971
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
972

973 974 975 976 977 978
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
979

980
    out_shape = None
981 982 983 984 985
    if (
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
986 987
        out_shape = [int(math.ceil((end - start) / step))]

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

    if in_dygraph_mode():
1010
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1011 1012

    if _in_legacy_dygraph():
1013
        out = _legacy_C_ops.range(start, end, step)
1014 1015 1016
        out.stop_gradient = True
        return out

1017 1018 1019
    check_dtype(
        dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'range/arange'
    )
1020 1021
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
1022 1023 1024 1025 1026
    helper.append_op(
        type='range',
        inputs={'Start': start, 'End': end, 'Step': step},
        outputs={'Out': out},
    )
1027
    out.stop_gradient = True
1028 1029
    if out_shape is not None:
        out.desc.set_shape(out_shape)
1030
    return out
W
WuHaobo 已提交
1031 1032 1033


def _tril_triu_op(helper):
1034
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1035
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1036
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1037 1038

    assert x is not None, 'x cannot be None in {}'.format(op_type)
1039
    check_variable_and_dtype(
1040 1041 1042 1043 1044
        x,
        'x',
        ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
        op_type,
    )
W
WuHaobo 已提交
1045
    if len(x.shape) < 2:
Y
yaoxuefeng 已提交
1046
        raise ValueError("x shape in {} must be at least 2-D".format(op_type))
W
WuHaobo 已提交
1047
    diagonal = helper.kwargs.get('diagonal', 0)
1048
    if not isinstance(diagonal, (int,)):
W
WuHaobo 已提交
1049 1050 1051 1052 1053 1054
        raise TypeError("diagonal in {} must be a python Int".format(op_type))
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1055 1056 1057
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1058 1059 1060 1061 1062 1063 1064 1065

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1066 1067
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1068 1069 1070 1071

    return out


Y
yaoxuefeng 已提交
1072
def tril(x, diagonal=0, name=None):
1073
    r"""
1074
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1075 1076
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1077 1078 1079
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1080
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1081
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1082 1083 1084 1085 1086 1087 1088
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1089
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1090 1091

    Returns:
Y
yaoxuefeng 已提交
1092
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1093
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1094 1095 1096 1097

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1098
            import paddle
W
WuHaobo 已提交
1099

1100 1101 1102 1103 1104
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1105

1106 1107 1108 1109 1110
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1111 1112

            # example 2, positive diagonal value
1113 1114 1115 1116 1117
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1118 1119

            # example 3, negative diagonal value
1120 1121 1122 1123 1124
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1125
    """
F
From00 已提交
1126
    if in_dygraph_mode():
1127
        return _C_ops.tril(x, diagonal, True)
F
From00 已提交
1128 1129

    if _in_legacy_dygraph():
1130
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1131
        return op(x, 'diagonal', diagonal, "lower", True)
W
WuHaobo 已提交
1132 1133 1134 1135

    return _tril_triu_op(LayerHelper('tril', **locals()))


Y
yaoxuefeng 已提交
1136
def triu(x, diagonal=0, name=None):
1137
    r"""
1138
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1139
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1140 1141 1142 1143
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1144
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1145 1146 1147 1148 1149 1150 1151 1152
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1153
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1154 1155

    Returns:
Y
yaoxuefeng 已提交
1156
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1157
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1158 1159 1160 1161

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1162
            import paddle
W
WuHaobo 已提交
1163

1164 1165 1166 1167 1168
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1169 1170

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1171
            triu1 = paddle.tensor.triu(x)
1172 1173 1174 1175
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1176 1177

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1178
            triu2 = paddle.tensor.triu(x, diagonal=2)
1179 1180 1181 1182
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1183 1184

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1185
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1186 1187 1188 1189
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1190 1191

    """
F
From00 已提交
1192
    if in_dygraph_mode():
1193
        return _C_ops.triu(x, diagonal, False)
F
From00 已提交
1194 1195

    if _in_legacy_dygraph():
1196
        op = getattr(_legacy_C_ops, 'tril_triu')
Y
yaoxuefeng 已提交
1197
        return op(x, 'diagonal', diagonal, "lower", False)
W
WuHaobo 已提交
1198 1199

    return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1200 1201


1202
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1203
    """
1204

1205
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1206

S
suytingwan 已提交
1207
    Args:
1208
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
S
suytingwan 已提交
1209
            (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
1210
        **kwargs (optional): Currently, only accept name in **kwargs
1211
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1212
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1213

S
suytingwan 已提交
1214
    Returns:
Y
yaoxuefeng 已提交
1215
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1216 1217 1218 1219 1220 1221

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1222 1223 1224 1225
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1226

Y
yaoxuefeng 已提交
1227 1228
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1229 1230 1231 1232 1233 1234

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1235 1236
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
Y
YuanRisheng 已提交
1237
    if _in_legacy_dygraph():
1238
        num = len(args)
1239
        out = _legacy_C_ops.meshgrid(list(args), num)
S
suytingwan 已提交
1240
        return out
Y
YuanRisheng 已提交
1241
    if in_dygraph_mode():
1242
        return _C_ops.meshgrid(list(args))
S
suytingwan 已提交
1243

1244
    name = kwargs.get("name", None)
S
suytingwan 已提交
1245 1246
    helper = LayerHelper('meshgrid', **locals())

1247 1248
    if not isinstance(args, (list, tuple)):
        raise TypeError("The type of input args in meshgrid should be list.")
S
suytingwan 已提交
1249

1250
    for id, input_ in enumerate(args):
1251 1252 1253 1254 1255 1256
        check_dtype(
            input_.dtype,
            'create data type',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'meshgrid',
        )
S
suytingwan 已提交
1257

1258
    num = len(args)
S
suytingwan 已提交
1259
    out = [
1260
        helper.create_variable_for_type_inference(dtype=args[i].dtype)
S
suytingwan 已提交
1261 1262
        for i in range(num)
    ]
1263 1264 1265
    helper.append_op(
        type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
    )
S
suytingwan 已提交
1266 1267

    return out
1268 1269


L
Li Min 已提交
1270 1271
def diagflat(x, offset=0, name=None):
    """
1272
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. It can be any shape. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1288
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1289 1290 1291 1292 1293 1294

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1295
            :name: code-example-1
L
Li Min 已提交
1296

1297 1298 1299 1300
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1301 1302 1303 1304 1305
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1306 1307

            y = paddle.diagflat(x, offset=1)
1308 1309 1310 1311 1312 1313
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1314 1315

            y = paddle.diagflat(x, offset=-1)
1316 1317 1318 1319 1320 1321
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1322 1323

        .. code-block:: python
1324
            :name: code-example-2
L
Li Min 已提交
1325

1326
            import paddle
L
Li Min 已提交
1327

1328 1329
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1330 1331 1332 1333 1334 1335
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1336 1337

            y = paddle.diagflat(x, offset=1)
1338 1339 1340 1341 1342 1343 1344
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1345 1346

            y = paddle.diagflat(x, offset=-1)
1347 1348 1349 1350 1351 1352 1353
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1354 1355
    """
    padding_value = 0
1356 1357
    if in_dygraph_mode():
        if len(x.shape) == 1:
1358
            return _C_ops.diag(x, offset, padding_value)
1359
        else:
1360 1361
            y = _C_ops.flatten(x, 0, -1)
            return _C_ops.diag(y, offset, padding_value)
1362 1363

    if _in_legacy_dygraph():
L
Li Min 已提交
1364
        if len(x.shape) == 1:
1365 1366 1367
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1368
        else:
1369
            y, _ = _legacy_C_ops.flatten_contiguous_range(
1370 1371 1372 1373 1374
                x, "start_axis", 0, "stop_axis", -1
            )
            return _legacy_C_ops.diag_v2(
                y, "offset", offset, "padding_value", padding_value
            )
L
Li Min 已提交
1375 1376

    check_type(x, 'x', (Variable), 'diagflat')
1377 1378 1379
    check_dtype(
        x.dtype, 'x', ['float32', 'float64', 'int32', 'int64'], 'diagflat'
    )
L
Li Min 已提交
1380 1381 1382 1383 1384 1385 1386 1387
    check_type(offset, 'offset', (int), 'diagflat')

    helper = LayerHelper("diagflat", **locals())
    out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
    out1_shape = helper.create_variable_for_type_inference(x.dtype)
    out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

    if len(x.shape) == 1:
1388 1389 1390 1391 1392 1393
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1394
    else:
1395 1396 1397 1398 1399 1400
        helper.append_op(
            type='flatten_contiguous_range',
            inputs={'X': x},
            outputs={'Out': out1, 'XShape': out1_shape},
            attrs={'start_axis': 0, 'stop_axis': -1},
        )
L
Li Min 已提交
1401 1402
        out1.stop_gradient = True

1403 1404 1405 1406 1407 1408
        helper.append_op(
            type='diag_v2',
            inputs={'X': out1},
            outputs={'Out': out2},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
L
Li Min 已提交
1409 1410 1411 1412
    out2.stop_gradient = True
    return out2


1413 1414
def diag(x, offset=0, padding_value=0, name=None):
    """
1415
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float32, float64, int32, int64.
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1431
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1432

1433 1434 1435 1436 1437
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1438
            :name: code-example-1
1439

1440
            import paddle
1441

1442 1443 1444
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1445 1446 1447 1448 1449
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1450 1451

            y = paddle.diag(x, offset=1)
1452 1453 1454 1455 1456 1457
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1458 1459

            y = paddle.diag(x, padding_value=6)
1460 1461 1462 1463 1464
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1465 1466

        .. code-block:: python
1467
            :name: code-example-2
1468

1469
            import paddle
1470

1471 1472 1473
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1474 1475 1476
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1477

1478
            y = paddle.diag(x, offset=1)
1479 1480 1481
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1482

1483
            y = paddle.diag(x, offset=-1)
1484 1485 1486
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1487
    """
J
Jiabin Yang 已提交
1488
    if in_dygraph_mode():
1489
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1490 1491
    else:
        if _in_legacy_dygraph():
1492 1493 1494
            return _legacy_C_ops.diag_v2(
                x, "offset", offset, "padding_value", padding_value
            )
J
Jiabin Yang 已提交
1495 1496
        else:
            check_type(x, 'x', (Variable), 'diag_v2')
1497 1498 1499 1500 1501 1502
            check_dtype(
                x.dtype,
                'x',
                ['float32', 'float64', 'int32', 'int64'],
                'diag_v2',
            )
J
Jiabin Yang 已提交
1503 1504 1505 1506
            check_type(offset, 'offset', (int), 'diag_v2')
            check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
            if len(x.shape) != 1 and len(x.shape) != 2:
                raise ValueError(
1507 1508 1509 1510
                    "The dimension of input x must be either 1 or 2, but received {}".format(
                        len(x.shape)
                    )
                )
1511

J
Jiabin Yang 已提交
1512
            helper = LayerHelper("diag_v2", **locals())
1513

J
Jiabin Yang 已提交
1514
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
1515

1516 1517 1518 1519 1520 1521
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
1522

J
Jiabin Yang 已提交
1523 1524
            out.stop_gradient = True
            return out
1525 1526 1527 1528


def empty(shape, dtype=None, name=None):
    """
1529
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1530

1531
    Args:
1532 1533 1534
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1535 1536 1537 1538
        dtype(np.dtype|str, optional): Data type of the output Tensor
            which can be bool, float16, float32, float64, int32, int64, if dytpe is `None`, the data
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1539
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1540

1541 1542 1543 1544 1545 1546
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1547
            import paddle
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1568 1569 1570 1571 1572 1573 1574
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1575 1576
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
1577 1578 1579
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1580 1581 1582 1583
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1584
        shape = utils.convert_shape_to_list(shape)
1585 1586 1587
        out = _legacy_C_ops.empty(
            'shape', shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1588 1589 1590 1591 1592 1593
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty", **locals())
    inputs = {}

1594 1595 1596 1597 1598 1599
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty',
    )
1600 1601 1602 1603 1604 1605
    check_type(shape, 'shape', (Variable, list, tuple), 'empty')

    if isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')

    attrs = {}
1606 1607 1608
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
    )
1609 1610 1611

    out = helper.create_variable_for_type_inference(dtype=dtype)
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
1612 1613 1614 1615 1616 1617 1618
    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1619 1620
    out.stop_gradient = True
    return out
1621 1622 1623 1624


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1625
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1626
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1627

1628 1629 1630
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1631
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1632
            data type is the same as input.
1633
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1634

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1655
    if in_dygraph_mode():
1656 1657 1658 1659 1660
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1661 1662 1663 1664
        out.stop_gradient = True
        return out

    if _in_legacy_dygraph():
1665 1666 1667
        out = _legacy_C_ops.empty(
            'shape', x.shape, 'dtype', convert_np_dtype_to_dtype_(dtype)
        )
1668 1669 1670 1671 1672
        out.stop_gradient = True
        return out

    helper = LayerHelper("empty_like", **locals())
    check_variable_and_dtype(
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
        x,
        'x',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
    check_dtype(
        dtype,
        'dtype',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'empty_like',
    )
1684 1685 1686 1687 1688 1689
    out = helper.create_variable_for_type_inference(dtype=dtype)

    inputs = {}
    attrs = {}
    attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
    shape = paddle.shape(x)
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
    )

    helper.append_op(
        type='empty',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs,
        stop_gradient=True,
    )
1701 1702
    out.stop_gradient = True
    return out
1703 1704 1705 1706


def assign(x, output=None):
    """
1707

1708
    Copy value of the :attr:`x` to the :attr:`output`.
1709

1710
    Parameters:
1711 1712
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
1713
            data limitation.
1714
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
1715

1716
    Returns:
1717
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
1718

1719 1720
    Examples:
        .. code-block:: python
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
1732
    """
1733 1734
    input = x
    helper = LayerHelper('assign', **locals())
1735 1736 1737 1738 1739 1740
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
    is_inplace = True if output is not None else False

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but _non_static_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
1752
    if isinstance(input, (Variable, core.VarBase, core.eager.Tensor)):
Z
zyfncg 已提交
1753
        if in_dygraph_mode():
1754
            if output is None:
1755
                output = _C_ops.assign(input)
Z
zyfncg 已提交
1756
            else:
1757
                _C_ops.assign_out_(input, output)
Z
zyfncg 已提交
1758 1759 1760
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1761
            _legacy_C_ops.assign(input, output)
1762
        else:
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
1779 1780
            if output is None:
                output = helper.create_variable_for_type_inference(
1781 1782 1783 1784 1785
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
1786
    elif isinstance(input, np.ndarray):
1787
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
1788
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
1789
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
1790 1791 1792 1793
            if not all(
                [
                    x.shape == (1,)
                    for x in input
1794
                    if isinstance(x, (Variable, core.eager.Tensor))
1795 1796
                ]
            ):
1797 1798 1799 1800 1801
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
1802
                if not isinstance(x, (Variable, core.eager.Tensor)):
1803 1804 1805 1806 1807 1808 1809 1810 1811
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
1812
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
1813
            raise TypeError(
1814
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
1815
            )
1816

1817 1818 1819 1820 1821 1822 1823
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
1824 1825
                "it to float32"
            )
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
1843 1844
                "received %s." % convert_dtype(dtype)
            )
1845
        if input.size > 1024 * 1024:
1846 1847 1848 1849
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
1850 1851 1852
        if in_dygraph_mode():
            if output is None:
                output = zeros(list(input.shape), dtype)
1853 1854 1855 1856 1857 1858 1859
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
1860 1861 1862
        elif _in_legacy_dygraph():
            if output is None:
                output = core.VarBase()
1863 1864 1865 1866 1867 1868 1869 1870 1871
            _legacy_C_ops.assign_value(
                output,
                'shape',
                list(input.shape),
                'dtype',
                dtype,
                value_name,
                values,
            )
1872
        else:
1873 1874
            if output is None:
                output = helper.create_variable_for_type_inference(
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
1886

Z
zyfncg 已提交
1887
    if is_inplace and _in_legacy_dygraph():
1888 1889 1890
        output._bump_inplace_version()

    return output
1891 1892


1893 1894
def clone(x, name=None):
    """
1895 1896
    Returns a copy of input Tensor. It will always have a Tensor copy.

1897 1898 1899 1900
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
1901
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1902

1903
    Returns:
1904
        Tensor, A Tensor copied from ``input``.
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


1923
# NOTE(zhiqiu): not public
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace or NPUPlace <-> CPUPlace.

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
1937
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
1938 1939 1940 1941 1942

    Examples:
        .. code-block:: python

          import paddle
1943

1944 1945 1946 1947 1948 1949 1950
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

    if isinstance(input, (Variable, core.VarBase)):
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3
        elif p.is_npu_place():
            dst_place_type = 4

    attrs = {'dst_place_type': dst_place_type}
1988 1989 1990 1991 1992 1993
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
1994
    return output
F
Feiyu Chan 已提交
1995 1996 1997 1998 1999 2000 2001 2002


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2003
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

    **Note**:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2018 2019 2020 2021
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2022
    """
2023
    if in_dygraph_mode():
2024
        return _C_ops.complex(real, imag)
2025

Z
zhiboniu 已提交
2026
    if paddle.in_dynamic_mode():
2027
        return paddle._legacy_C_ops.complex(real, imag)
F
Feiyu Chan 已提交
2028 2029 2030 2031 2032 2033 2034 2035

    check_variable_and_dtype(real, 'real', ['float32', 'float64'], 'complex')
    check_variable_and_dtype(imag, 'imag', ['float32', 'float64'], 'complex')

    op_type = "complex"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": real, "Y": imag}
    out = helper.create_variable_for_type_inference(
2036 2037
        dtype=_real_to_complex_dtype(real.dtype)
    )
F
Feiyu Chan 已提交
2038 2039 2040 2041
    outputs = {"Out": out}
    attrs = {}
    helper.append_op(type=op_type, inputs=inputs, attrs=attrs, outputs=outputs)
    return out
2042 2043 2044 2045


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2046 2047
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2048 2049
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2050

2051 2052 2053 2054 2055
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2056 2057 2058 2059
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2070

2071 2072 2073
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2074
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2075 2076 2077 2078 2079
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2080
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a  int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2105 2106 2107
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2108 2109 2110
        return out

    if _in_legacy_dygraph():
2111 2112 2113
        out = _legacy_C_ops.tril_indices(
            'rows', row, 'cols', col, 'offset', offset, "dtype", dtype
        )
2114 2115 2116 2117 2118 2119 2120
        return out

    else:
        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2121 2122 2123 2124 2125 2126
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2127
    return out
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(row, int) or row < 0:
        raise TypeError("row should be a non-negative int")

    if col is not None:
        if not isinstance(col, int) or col < 0:
            raise TypeError("col should be a non-negative int")
    else:
        col = row

    if not isinstance(offset, int):
        raise TypeError("offset should be a int")

    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if in_dygraph_mode():
2189 2190 2191
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2192 2193 2194
        return out

    if _in_legacy_dygraph():
2195 2196 2197
        out = _legacy_C_ops.triu_indices(
            'row', row, 'col', col, 'offset', offset, "dtype", dtype
        )
2198 2199 2200 2201 2202 2203 2204
        return out

    else:
        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2205 2206 2207 2208 2209 2210
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2211
    return out