backward.py 95.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
T
tangwei12 已提交
16
from .proto import framework_pb2
17

18
from paddle.fluid import framework as framework
19
from paddle.fluid import program_guard
F
update  
fengjiayi 已提交
20
from . import core
F
update  
fengjiayi 已提交
21
import collections
22
import copy
23
import six
24
import logging
M
minqiyang 已提交
25
from .. import compat as cpt
26
from . import unique_name
27
from . import log_helper
L
liym27 已提交
28
import paddle.fluid
29
from .data_feeder import check_type
30
import warnings
31 32 33 34
try:
    from collections.abc import Sequence
except:
    from collections import Sequence
35

M
mapingshuo 已提交
36 37 38 39 40
__all__ = [
    'append_backward',
    'gradients',
]

41 42 43
_logger = log_helper.get_logger(__name__,
                                logging.INFO,
                                fmt='%(asctime)s-%(levelname)s: %(message)s')
44

M
mapingshuo 已提交
45 46

class ProgramStats(object):
47

M
mapingshuo 已提交
48 49 50 51 52 53 54 55 56
    def __init__(self, block, ops):
        self.block = block
        self.ops = ops
        self.op_deps = {}  # op-> in_ops, out_ops
        self.var_op_deps = {}  # var as input op, var as output op

    def get_input_nodes(self):
        input_names = []
        for name in self.var_op_deps:
57
            if len(self.var_op_deps[name]["var_as_output_ops"]) == 0 and \
T
tangwei12 已提交
58
                    len(self.var_op_deps[name]["var_as_input_ops"]) > 0:
M
mapingshuo 已提交
59 60 61 62 63 64 65 66 67 68 69
                if self.block.var(name).persistable:
                    continue
                input_names.append(name)
        for op in self.ops:
            if op.desc.type() == "read":
                input_names.extend(op.desc.output_arg_names())
        return input_names

    def get_reserved_vars(self):
        var_name = []
        for op in self.ops:
M
mapingshuo 已提交
70
            if op.desc.type() == "seed":
M
mapingshuo 已提交
71 72 73 74 75 76 77 78 79 80 81
                var_name.extend(op.desc.output_arg_names())
        return var_name

    def get_out_of_subgraph_vars(self, begin_op_idx, end_op_idx):
        var_name = []
        for i in range(begin_op_idx, end_op_idx, 1):
            for name in self.ops[i].desc.output_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_input_ops"]:
                        if idx >= end_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
82 83 84 85 86
            for name in self.ops[i].desc.input_arg_names():
                if name in self.var_op_deps:
                    for idx in self.var_op_deps[name]["var_as_output_ops"]:
                        if idx < begin_op_idx:
                            var_name.append(name)
M
mapingshuo 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        return var_name

    def is_subgraph(self, var_group1, var_group2):
        # should traverse from var_group1 to var_group2
        # max op idx in var_group2
        # min op idx in var_group1
        min_op_idx = len(self.ops)
        max_op_idx = -1
        for name in var_group1:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group2:
            if name not in self.var_op_deps:
                return False, min_op_idx, max_op_idx
        for name in var_group1:
            op_idx = self.var_op_deps[name]["var_as_input_ops"]
            for idx in op_idx:
                min_op_idx = min(min_op_idx, idx)
        for name in var_group2:
            op_idx = self.var_op_deps[name]["var_as_output_ops"]
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if min_op_idx >= max_op_idx:
            return False, min_op_idx, max_op_idx
J
JZ-LIANG 已提交
111

M
mapingshuo 已提交
112 113
        return True, min_op_idx, max_op_idx

J
JZ-LIANG 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126
    def _update_segment_start(self, min_idx, pre_segment_end_idx):
        """
        persist vars of amp-related cast should be included in recompute segment
        """

        def is_amp_cast(op):
            return op.desc.type() == 'cast' and self.block.var(
                op.desc.input_arg_names()[0]).persistable

        idx_ = min_idx - 1
        updated_min_idx = min_idx
        while idx_ > pre_segment_end_idx:
            if is_amp_cast(self.ops[idx_]):
127 128 129
                _logger.info("found amp-cast op: {}, : {}".format(
                    self.ops[idx_].desc.type(),
                    self.ops[idx_].desc.input_arg_names()[0]))
J
JZ-LIANG 已提交
130 131 132 133 134 135 136
                updated_min_idx = idx_
                idx_ -= 1
            else:
                break

        return updated_min_idx

M
mapingshuo 已提交
137 138 139 140 141
    def build_stats(self):
        for i, op in enumerate(self.ops):
            self.op_deps[i] = {"in_ops": [], "out_ops": []}
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
142 143
                    self.op_deps[i]["in_ops"].extend(
                        self.var_op_deps[name]["var_as_output_ops"])
M
mapingshuo 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
            for j, name in enumerate(op.desc.input_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_input_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = [i]
                    self.var_op_deps[name]["var_as_output_ops"] = []

            for j, name in enumerate(op.desc.output_arg_names()):
                if name in self.var_op_deps:
                    self.var_op_deps[name]["var_as_output_ops"].extend([i])
                else:
                    self.var_op_deps[name] = {}
                    self.var_op_deps[name]["var_as_input_ops"] = []
                    self.var_op_deps[name]["var_as_output_ops"] = [i]

            for op_idx in self.op_deps[i]["in_ops"]:
                self.op_deps[op_idx]["out_ops"].extend([i])

163 164 165 166
    def sort_checkpoints(self, checkpoints_name):
        sorted_checkpoints = []
        for name in checkpoints_name:
            if name not in self.var_op_deps:
167
                _logger.info(
168 169 170 171 172 173 174 175 176 177 178
                    "Recompute Optimizer: deleted %s from checkpoints, because it is not used in paddle program."
                    % name)
            elif self.var_op_deps[name]["var_as_output_ops"] == []:
                # input nodes
                sorted_checkpoints.append((name, -1))
            else:
                sorted_checkpoints.append(
                    (name, max(self.var_op_deps[name]["var_as_output_ops"])))
        sorted_checkpoints = sorted(sorted_checkpoints, key=lambda x: x[1])
        return [x[0] for x in sorted_checkpoints]

M
mapingshuo 已提交
179 180 181 182 183 184
    def modify_forward_desc_for_recompute(self):
        op_types = [op.desc.type() for op in self.ops]
        if "dropout" not in op_types:
            return

        op_idx = 0
185
        while op_idx < len(self.ops):
M
mapingshuo 已提交
186 187 188 189
            op = self.ops[op_idx]
            if op.desc.type() != "dropout":
                op_idx += 1
                continue
190 191 192 193
            # already insert seed op before dropout
            if op.input('Seed') is not None and len(op.input('Seed')) == 1:
                op_idx += 1
                continue
M
mapingshuo 已提交
194 195 196 197 198 199 200 201 202 203 204
            # add a seed op so that the two dropout op can generate same output
            op_unique_name = unique_name.generate("seed")
            var_unique_name = unique_name.generate_with_ignorable_key(".".join(
                [op_unique_name, 'tmp']))
            added_var = self.block.create_var(
                name=var_unique_name,
                dtype='int32',
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=False)
            seed = 0 if op.attr("fix_seed") is False else int(op.attr("seed"))
205 206 207 208 209 210 211

            op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
            )
            op_device = ""
            if op.desc.has_attr(op_device_attr_name):
                op_device = op.desc.attr(op_device_attr_name)

212
            # Setting the force_cpu of seed to true will make the output of seed in cpu memory,
213
            # reduce the synchronous copy from GPU to CPU in dropout, and reduce the communication hang
214 215 216 217 218 219 220 221 222
            added_op = self.block._insert_op(index=op.idx,
                                             type='seed',
                                             inputs={},
                                             outputs={'Out': [added_var]},
                                             attrs={
                                                 'seed': seed,
                                                 'op_device': op_device,
                                                 'force_cpu': True
                                             })
M
mapingshuo 已提交
223 224 225 226 227 228 229 230
            self.ops.insert(op_idx, added_op)
            # modify dropout op desc so that it accept a seed var as input
            op.desc.set_input("Seed", [var_unique_name])
            op.desc.remove_attr("fix_seed")
            op.desc.remove_attr("seed")
            self.block._sync_with_cpp()
            op_idx += 2

M
mapingshuo 已提交
231 232 233 234 235 236 237 238

def _pretty_op_desc_(op_desc, prefix):
    out_s = "%s\tname:[%s]\n%s    \tinputs:[%s]\n%s    \toutputs:[%s]" % \
            (prefix + "_op", str(op_desc.type()), prefix + "_input", " ".join(op_desc.input_arg_names()),
             prefix + "_output", " ".join(op_desc.output_arg_names()))
    return out_s


239 240 241 242 243
def _add_needed_descs_to_block(descs,
                               block,
                               main_block,
                               in_memory_vars,
                               grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
244 245 246 247
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
T
tangwei12 已提交
248
        core.op_proto_and_checker_maker.kOpRoleAttrName()
M
mapingshuo 已提交
249 250
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
251 252
        origin_desc = desc
        origin_is_operator = False
M
mapingshuo 已提交
253 254
        if isinstance(desc, framework.Operator):
            desc = desc.desc
255
            origin_is_operator = True
M
mapingshuo 已提交
256 257 258 259 260 261 262 263 264
        if isinstance(desc, tuple):
            desc = desc[0]
        is_needed = False
        for name in desc.output_arg_names():
            if main_block.has_var(name) and main_block.var(name).persistable:
                continue
            if name not in in_memory_vars:
                is_needed = True
        if is_needed:
265 266
            if origin_is_operator and grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.original_id()] = origin_desc
M
mapingshuo 已提交
267 268 269
            new_op_desc = block.desc.append_op()
            new_op_desc.copy_from(desc)
            new_op_desc._set_attr(op_role_attr_name, backward)
270 271
            if desc.has_attr('op_device'):
                new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
272 273 274 275
            result_descs.append(new_op_desc)
    return result_descs


276
def _add_descs_to_block(descs, block, grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
277 278 279 280 281 282 283 284
    if len(descs) == 0:
        return []
    result_descs = []
    op_role_attr_name = \
        core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    for desc in descs:
        if isinstance(desc, framework.Operator):
285 286 287
            # for recompute, should record recompute ops
            if grad_op_id_to_fwd_op is not None:
                grad_op_id_to_fwd_op[desc.desc.original_id()] = desc
M
mapingshuo 已提交
288 289 290 291 292 293
            desc = desc.desc
        if isinstance(desc, tuple):
            desc = desc[0]
        new_op_desc = block.desc.append_op()
        new_op_desc.copy_from(desc)
        new_op_desc._set_attr(op_role_attr_name, backward)
294 295
        if desc.has_attr('op_device'):
            new_op_desc._set_attr('op_device', desc.attr('op_device'))
M
mapingshuo 已提交
296 297 298 299 300 301 302
        result_descs.append(new_op_desc)
    return result_descs


def _find_loss_op_(loss):
    for op in reversed(loss.block.ops):
        assert isinstance(op, framework.Operator)
303 304
        if len(op.output_arg_names
               ) == 1 and op.output_arg_names[0] == loss.name:
M
mapingshuo 已提交
305 306 307 308
            loss.op = op
            break
    if loss.op is None:
        raise ValueError("loss.op is None. Should not happend")
309 310


311 312
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
313
    Traverse all ops in op_descs[begin_idx : end_idx],
314 315
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
316 317 318
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
319
        end_idx = len(op_descs)
320 321 322 323 324 325 326 327 328 329 330 331 332
    if isinstance(op_descs, (list, tuple)):
        for i in range(begin_idx, end_idx):
            op_desc = op_descs[i]
            if isinstance(op_desc, tuple):
                op_desc = op_desc[0]
            op_desc._rename_input(old_name, new_name)
            op_desc._rename_output(old_name, new_name)
    if isinstance(op_descs, collections.OrderedDict):
        for key, value in op_descs.items():
            if isinstance(value, (list, tuple)):
                for op_desc in value:
                    op_desc._rename_input(old_name, new_name)
                    op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
333 334


F
fengjiayi 已提交
335
def _create_op_desc_(op_type, inputs, outputs, attrs):
336 337 338
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
339 340
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
341
    for para, args in six.iteritems(inputs):
342 343 344
        op_desc.set_input(
            para,
            list(
345 346 347
                map(
                    lambda arg: arg.decode()
                    if isinstance(arg, six.binary_type) else arg, args)))
M
minqiyang 已提交
348
    for para, args in six.iteritems(outputs):
349 350 351
        op_desc.set_output(
            para,
            list(
352 353 354
                map(
                    lambda arg: arg.decode()
                    if isinstance(arg, six.binary_type) else arg, args)))
Y
yuyang18 已提交
355 356

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
357
    op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
Y
yuyang18 已提交
358 359 360 361

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
362 363
    if op_device_attr_name not in attrs:
        attrs[op_device_attr_name] = ""
M
minqiyang 已提交
364
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
365 366 367
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
368
            op_desc._set_attr(name, val)
F
fengjiayi 已提交
369 370 371
    return op_desc


M
mapingshuo 已提交
372 373 374 375
def _create_loss_op_desc_(loss):
    op_desc = _create_op_desc_(
        "fill_constant", {}, {"Out": [_append_grad_suffix_(loss.name)]}, {
            "shape": [1],
376 377 378 379 380 381
            "value":
            1.0,
            "dtype":
            loss.dtype,
            "force_cpu":
            False,
M
mapingshuo 已提交
382
            core.op_proto_and_checker_maker.kOpRoleAttrName():
383 384
            int(core.op_proto_and_checker_maker.OpRole.Backward)
            | int(core.op_proto_and_checker_maker.OpRole.Loss),
385 386
            core.op_proto_and_checker_maker.kOpDeviceAttrName():
            loss.op.attr(core.op_proto_and_checker_maker.kOpDeviceAttrName())
M
mapingshuo 已提交
387 388 389 390
        })
    return op_desc


391
def _infer_var_data_type_shape_(grad_var_name, block):
392
    """
393
    Infer the data type and shape of given grad variable
394
    """
M
minqiyang 已提交
395 396 397 398
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
399
        grad_var.set_dtype(fwd_var.dtype())
400
        grad_var.set_shape(fwd_var.shape())
F
fengjiayi 已提交
401
    else:
402 403
        # TODO(jiabin): Maybe we should not to this to cause some unexpected error on dtype
        warnings.warn(
404 405
            "Set grad var: {} dtype to default FP32, since we can't find its related forward var"
            .format(grad_var_name))
406
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
407 408


F
fengjiayi 已提交
409
def _all_in_set_(cands, s):
410 411 412
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
413 414
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
415 416 417 418 419 420
    for c in cands:
        if not c in s:
            return False
    return True


421 422 423 424 425 426
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
427 428
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
429 430
    for c in literal_cands:
        if c in literal_set:
431 432 433 434
            return True
    return False


F
fengjiayi 已提交
435
def _strip_grad_suffix_(name):
436
    """
M
mapingshuo 已提交
437
    Strip the grad suffix from the given variable name
438 439 440
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
441
    name = cpt.to_text(name)
M
minqiyang 已提交
442
    pos = name.find(core.grad_var_suffix())
443 444 445
    new_name = name[:pos] if pos != -1 else name
    new_pos = name.rfind('grad/')
    return new_name[new_pos + 5:] if new_pos != -1 else new_name
F
fengjiayi 已提交
446 447 448


def _append_grad_suffix_(name):
449 450 451 452
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
453
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
454 455


T
tangwei12 已提交
456 457 458 459 460
def _accumulate_gradients_by_sum_op_(var_name,
                                     renamed_vars,
                                     pending_sum_ops,
                                     op_idx,
                                     op_device=""):
461 462 463 464 465 466
    """
    Use sum op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    pending_sum_ops[op_idx].append(
467 468 469 470 471
        _create_op_desc_("sum", {"X": renamed_vars[var_name]},
                         {"Out": [var_name]}, {
                             "use_mkldnn": False,
                             "op_device": op_device
                         }))
472 473 474
    renamed_vars[var_name] = [var_name]


T
tangwei12 已提交
475 476 477 478 479
def _accumulate_gradients_by_add_ops_(var_name,
                                      renamed_vars,
                                      pending_sum_ops,
                                      op_idx,
                                      op_device=""):
480 481 482 483 484 485 486 487 488 489 490 491 492 493
    """
    Use several inplace add op to accumulate_gradients, the gradients are stored in renamed_vars.
    """
    if op_idx not in pending_sum_ops.keys():
        pending_sum_ops[op_idx] = []
    out_name = renamed_vars[var_name][0]
    for i in range(1, len(renamed_vars[var_name])):
        x_name = out_name
        y_name = renamed_vars[var_name][i]
        if i != len(renamed_vars[var_name]) - 1:
            out_name = var_name + '@ADD@' + str(i)
        else:
            out_name = var_name
        pending_sum_ops[op_idx].append(
494 495 496 497 498 499 500
            _create_op_desc_("grad_add", {
                "X": [x_name],
                "Y": [y_name]
            }, {"Out": [out_name]}, {
                "use_mkldnn": False,
                "op_device": op_device
            }))
501 502 503
    renamed_vars[var_name] = [var_name]


504 505 506 507
def _addup_repetitive_outputs_(op_descs,
                               block_idx,
                               grad_var_to_var=None,
                               grad_op_id_to_fwd_op=None):
508 509
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
510 511
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
512
    `sum_op`s are added to implement the accumulate.
513 514 515 516

    Args:
        grad_var_to_var(dict): used to build the mapping between grad var name and forward var name.
        Only for auto parallel.
517
    """
518

519
    _MAX_ADD_NUM_ = framework._global_flags()['FLAGS_max_inplace_grad_add']
520 521
    #pending_sum_ops = []
    pending_sum_ops = collections.OrderedDict()
F
update  
fengjiayi 已提交
522
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
523
    renamed_vars = collections.defaultdict(list)
524
    renamed_var_start_idx = collections.defaultdict(list)
525
    var_device = collections.defaultdict(str)
F
fengjiayi 已提交
526
    for idx, op_desc in enumerate(op_descs):
T
tangwei12 已提交
527 528 529 530 531
        op_device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
        )
        op_device = ""
        if op_desc.has_attr(op_device_attr_name):
            op_device = op_desc.attr(op_device_attr_name)
F
update  
fengjiayi 已提交
532
        for var_name in op_desc.input_arg_names():
M
mapingshuo 已提交
533 534
            if "@GRAD" not in var_name:
                continue
F
fengjiayi 已提交
535
            if len(renamed_vars[var_name]) > 1:
536
                if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
W
WangXi 已提交
537 538 539
                    _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                     pending_sum_ops, idx,
                                                     var_device[var_name])
540
                else:
W
WangXi 已提交
541 542 543
                    _accumulate_gradients_by_add_ops_(var_name, renamed_vars,
                                                      pending_sum_ops, idx,
                                                      var_device[var_name])
544

F
update  
fengjiayi 已提交
545
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
546 547
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
M
mapingshuo 已提交
548 549
                if "@GRAD" not in var_name:
                    continue
T
tangwei12 已提交
550
                # if "@RENAME@" in var_name:
M
mapingshuo 已提交
551
                #    continue
F
fengjiayi 已提交
552 553 554 555 556 557 558
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
559
                    renamed_var_start_idx[var_name] = idx
F
fengjiayi 已提交
560 561
                else:
                    if len(renamed_vars[var_name]) == 1:
562
                        new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
F
fengjiayi 已提交
563 564
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
565 566 567 568 569 570 571
                        # Build the mapping between the new_name and var_name (Only for auto parallel)
                        if grad_var_to_var is not None:
                            if var_name in grad_var_to_var:
                                grad_var_to_var[new_name] = grad_var_to_var[
                                    var_name]
                            else:
                                grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
572 573
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
574 575 576 577 578 579
                        # before change: _rename_arg_(op_descs, var_name,
                        #                             new_name, 0, idx)
                        # rename arg from idx of the first appearance
                        # in backward, not always from 0
                        _rename_arg_(op_descs, var_name, new_name,
                                     renamed_var_start_idx[var_name], idx)
F
fengjiayi 已提交
580 581
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

595
                    new_name = var_name + "@RENAME@block" + str(block_idx) + "@" + \
T
tangwei12 已提交
596
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
597
                    var_rename_count[var_name] += 1
598 599 600 601 602 603 604
                    # Build the mapping between the new_name and var_name (Only for auto parallel)
                    if grad_var_to_var is not None:
                        if var_name in grad_var_to_var:
                            grad_var_to_var[new_name] = grad_var_to_var[
                                var_name]
                        else:
                            grad_var_to_var[new_name] = var_name
F
fengjiayi 已提交
605 606 607
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
W
WangXi 已提交
608
                    # record the latest device
609
                    var_device[var_name] = op_device
F
update  
fengjiayi 已提交
610

M
minqiyang 已提交
611
    for var_name, inputs in six.iteritems(renamed_vars):
612 613
        if len(renamed_vars[var_name]) > 1:
            if len(renamed_vars[var_name]) > _MAX_ADD_NUM_:
614 615 616
                _accumulate_gradients_by_sum_op_(var_name, renamed_vars,
                                                 pending_sum_ops, len(op_descs),
                                                 var_device[var_name])
617
            else:
618 619 620 621
                _accumulate_gradients_by_add_ops_(var_name,
                                                  renamed_vars, pending_sum_ops,
                                                  len(op_descs),
                                                  var_device[var_name])
622

623
    op_descs_len = len(op_descs)
F
fengjiayi 已提交
624
    # sum_op descs are sorted according to their insert position
625 626 627 628 629 630 631 632 633
    for key, value in collections.OrderedDict(
            reversed(list(pending_sum_ops.items()))).items():

        # NOTE(zhiqiu): Since reversed, the idx of op_descs to be inserted will remains correct.
        # For example, [0, 1, 2], and we want to insert 'a' at idx 1, 'b' at idx 2, and the expected result is [0, 1, 'a', 2, 'b'].
        # If reversed, we first insert 'b' at idx 2, it becomes [0, 1, 2, 'b'], and then insert 'a' at idx 1, it becomes [0, 1, 'a', 2, 'b'].
        # If not reverse, we first insert 'a' at idx 1, it becomes [0, 1, 'a', 2], and then insert 'b' at idx 2, it becomes [0, 1, 'a', 'b', 2].
        idx = key
        for i, op in enumerate(value):
634 635 636 637 638 639
            # update the mapping between fwd and bwd
            target_idx = idx - 1 if idx == op_descs_len else idx + i
            if grad_op_id_to_fwd_op is not None and grad_op_id_to_fwd_op.get(
                    op_descs[target_idx].original_id(), None) is not None:
                grad_op_id_to_fwd_op[op.original_id()] = grad_op_id_to_fwd_op[
                    op_descs[target_idx].original_id()]
640
            op_descs.insert(idx + i, op)
F
fengjiayi 已提交
641 642 643 644

    return op_descs


645
def _remove_no_grad_branch_(op_descs, no_grad_set, grad_op_id_to_fwd_op=None):
646 647 648 649
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
650
        2. all grad inputs of the grad op are in 'no_grad_set'
651
    """
F
fengjiayi 已提交
652 653

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
654 655
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
656
            return True
657 658 659 660
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
661
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
662 663 664
            return True
        return False

F
fengjiayi 已提交
665
    # Remove ops whose outputs are all in no_grad_dict
666 667 668 669
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
670 671
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
672
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
673
        for arg in op_desc.input_arg_names():
M
mapingshuo 已提交
674
            # arg is a gradient var name and arg should not have gradient
F
fengjiayi 已提交
675
            if core.grad_var_suffix() in arg and arg in no_grad_set:
676
                x_in = _strip_grad_suffix_(arg)
M
mapingshuo 已提交
677 678
                # the reason should be: arg can be input of another grad op
                # and the op is a not-to-remove op
679 680 681 682 683 684 685 686
                new_op_desc = _create_op_desc_("fill_zeros_like", {"X": [x_in]},
                                               {"Out": [arg]}, {})
                # update the mapping between fwd and bwd
                if grad_op_id_to_fwd_op is not None and grad_op_id_to_fwd_op.get(
                        op_desc.original_id(), None) is not None:
                    grad_op_id_to_fwd_op[new_op_desc.original_id(
                    )] = grad_op_id_to_fwd_op[op_desc.original_id()]
                to_insert.append((new_op_desc, idx))
F
fengjiayi 已提交
687

688
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
689 690 691 692

    return op_descs


C
chengduo 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
def _find_not_need_ops(grad_op_descs, forward_ops, input_grad_names_set):
    """
    Pruning Program with Structural Analysis Method of Computational Graph.
    The nodes of the computational graph composed of backward OPS should be
    interconnected. If there are unconnected sub-graphs in the computational graph,
    these sub-graphs should be cut off.

    Args:
        grad_op_descs(list[core.OpDesc]): The candidate backward OpDescs.
        forward_ops(list[Operator]): The forward ops.
        input_grad_names_set(set): this set is used to store the gradients' name
            which is generated by backward ops, and input_grad_names_set can help
            to prune the unnecessary backward ops.

    Return:
708
        (set[core.OpDesc]): A set of OpDescs which should be pruned.
C
chengduo 已提交
709 710 711
    """

    class Var(object):
712

C
chengduo 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        def __init__(self, var_name):
            self.var_name = var_name
            self.gen_op = None
            self.pendding_ops = []

        def set_gen_op(self, gen_op):
            assert isinstance(gen_op, Op)
            assert self.gen_op is None
            self.gen_op = gen_op

        def add_pending_op(self, op):
            assert isinstance(op, Op)
            self.pendding_ops.append(op)

    class Op(object):
728

C
chengduo 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
        def __init__(self, op_desc):
            self.op_desc = op_desc
            self.inputs = []
            self.outputs = []

        def insert_input(self, var):
            assert isinstance(var, Var)
            self.inputs.append(var)

        def insert_output(self, var):
            assert isinstance(var, Var)
            self.outputs.append(var)

    var_versions = dict()

    def _create_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        else:
            var_versions[name].append(Var(name))
        return var_versions[name][-1]

    def _create_or_get_last_version_node(name):
        if name not in var_versions.keys():
            var_versions[name] = [Var(name)]
        return var_versions[name][-1]

    def _create_op_node(op_desc):
        op_node = Op(op_desc)
        for input in op_desc.input_arg_names():
            var = _create_or_get_last_version_node(name=input)
            var.add_pending_op(op_node)
            op_node.insert_input(var)
        for output in op_desc.output_arg_names():
            var = _create_node(name=output)
            var.set_gen_op(op_node)
            op_node.insert_output(var)
        return op_node

    # Record the forward vars
    forward_vars_set = set() if input_grad_names_set is None else set(
        input_grad_names_set)
    for op in forward_ops:
        forward_vars_set.update(op.desc.input_arg_names())
        forward_vars_set.update(op.desc.output_arg_names())

    # Record the vars which are created during backward and is not generated by op.
    backward_vars_set = set()
    # special_op_nodes is the candidate sub-graph head node.
    special_op_nodes = set()
    for op_desc in grad_op_descs:
        input_set = set(op_desc.input_arg_names())
        # The new_vars are created during backward and is not generated by op.
        new_vars = input_set - forward_vars_set - backward_vars_set
        backward_vars_set.update(op_desc.output_arg_names())

        op_node = _create_op_node(op_desc)
        if len(new_vars) == len(input_set):
            special_op_nodes.add(op_node)

    not_need_op_descs = []
    # Start traversing all candidate sub-graph headers to check whether
    # they are connected to backward computational graphs, and if they are
    # not, list them in not_need_op_descs
    for special_op_node in special_op_nodes:
        op_list = [special_op_node]
        ready_vars = set(special_op_node.inputs)
        remove_ops = True
        candidate_ops = [special_op_node]
        while len(candidate_ops) > 0:
            op_node = candidate_ops.pop(0)
            if _all_in_set_(op_node.inputs, ready_vars):
                for out_var in op_node.outputs:
                    candidate_ops.extend(out_var.pendding_ops)
                    op_list.extend(out_var.pendding_ops)
                ready_vars.update(op_node.outputs)
            else:
                remove_ops = False
                break
        if remove_ops:
            not_need_op_descs.extend([node.op_desc for node in op_list])
810 811 812
    not_need_op_descs_set = set(not_need_op_descs)
    grad_op_descs_set = set(grad_op_descs)
    # If a backward computational graph is simply one sub-graph header, the
813
    # not_need_op_descs will be whole graph, this IF clause avoids it.
814 815 816
    if grad_op_descs_set == not_need_op_descs_set:
        return set()
    return not_need_op_descs_set
C
chengduo 已提交
817 818


Y
Yang Yang 已提交
819 820
def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
821
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
822 823 824
    return proto.__str__()


825 826 827 828 829 830 831
def _append_backward_ops_with_checkpoints_(block,
                                           ops,
                                           target_block,
                                           no_grad_dict,
                                           grad_to_var,
                                           checkpoints,
                                           grad_op_id_to_fwd_op=None):
M
mapingshuo 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844
    """
    Create grad ops with forward ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
        ops(Op): the forward operators whose forward recomputation backward ops need to be added
        target_block(Block): the block which is going to hold new generated grad ops
        no_grad_dict(dict):
            key(int) block index
            val(str): corresponding forward variable name
        checkpoints: variables that a user defined as checkpoint for forward recomputation

    Algorithms:
M
mapingshuo 已提交
845
        0) deal with forward recomputing program descs
M
mapingshuo 已提交
846 847 848 849 850
        1) find ops between checkpoints, i.e. recompute_segments
        2) go through all forward ops and induct all variables that will be hold in memory
            a. variables that are used across segments will be held in memory
            b. output of dropout op will be held in memory
            c. input variables will be held in memory
M
mapingshuo 已提交
851 852 853
        3) go through each recompute_segments, add backward ops with forward recomputation
            a. add ops in current recompute_segment as forward recomputation ops
            b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
854 855
            c. add backward ops of current recomputation ops
            d. add sum op for repetitive_outputs
M
mapingshuo 已提交
856 857
        4) remove no grad branch as it is in _remove_no_grad_branch_
        5) Note1: all appended ops' OpRole are Backward
M
mapingshuo 已提交
858 859
        6) Note2: all variables with new name should be returned so that _append_backward_vars_ can be called
        7) Note3: current forward recomputation backpropagation does not handle programs with subblock
M
mapingshuo 已提交
860
    """
M
mapingshuo 已提交
861 862

    checkpoints_name = [x.name for x in checkpoints]
863
    checkpoints_name = list(set(checkpoints_name))
M
mapingshuo 已提交
864 865
    local_block = block.program._create_block()
    buffer_block = block.program._create_block()
866
    # 0) deal with forward recomputing program descs
M
mapingshuo 已提交
867
    program_stat = ProgramStats(block, ops)
M
mapingshuo 已提交
868
    program_stat.modify_forward_desc_for_recompute()
M
mapingshuo 已提交
869
    program_stat.build_stats()
M
mapingshuo 已提交
870 871

    # 1) find ops between checkpoints, i.e. recompute_segments
872
    checkpoints_name = program_stat.sort_checkpoints(checkpoints_name)
M
mapingshuo 已提交
873 874
    segments = []

875
    if len(checkpoints_name) == 1:
M
mapingshuo 已提交
876 877 878 879 880 881 882
        # only one checkpoint
        max_op_idx = -1
        var_group = [checkpoints_name[0]]
        for name in var_group:
            if name not in program_stat.var_op_deps:
                break
            op_idx = program_stat.var_op_deps[name]["var_as_output_ops"]
J
JZ-LIANG 已提交
883
            # only count the last generate op
M
mapingshuo 已提交
884 885 886 887 888 889
            for idx in op_idx:
                max_op_idx = max(max_op_idx, idx)
        if max_op_idx > 0:
            segments.append([0, max_op_idx + 1])
    else:
        start_idx = 0
J
JZ-LIANG 已提交
890
        pre_segment_end_idx = -1
M
mapingshuo 已提交
891 892 893
        while True:
            if start_idx >= len(checkpoints_name) - 1:
                break
J
JZ-LIANG 已提交
894 895
            # min_idx: checkpoint_1' s input op
            # max_idx: checkpoint_2' s output op
M
mapingshuo 已提交
896 897 898 899
            flag, min_idx, max_idx = program_stat.is_subgraph(
                [checkpoints_name[start_idx]],
                [checkpoints_name[start_idx + 1]])
            if flag:
J
JZ-LIANG 已提交
900 901 902
                # max_idx + 1 since the exact and used segment end idx is max_idx
                min_idx = program_stat._update_segment_start(
                    min_idx, pre_segment_end_idx)
M
mapingshuo 已提交
903
                segments.append([min_idx, max_idx + 1])
904 905 906
            else:
                _logger.info("Could not recompute op range [{}] - [{}] ".format(
                    min_idx, max_idx + 1))
J
JZ-LIANG 已提交
907

M
mapingshuo 已提交
908 909 910 911 912 913
            start_idx += 1

    if segments != [] and segments[0][0] != 0:
        recompute_segments = [[0, segments[0][0]]] + segments
    else:
        recompute_segments = segments
M
mapingshuo 已提交
914

J
JZ-LIANG 已提交
915
    for i, (idx1, idx2) in enumerate(recompute_segments):
916
        _logger.info("recompute segment[{}]".format(i))
917 918 919 920
        _logger.info("segment start op: [{}]: [{}]".format(
            ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()))
        _logger.info("segment end op: [{}]: [{}]".format(
            ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
921
        _logger.info("recompute segment[{}]".format(i))
922 923 924 925
        _logger.info("segment start op: [{}]: [{}]".format(
            ops[idx1].desc.type(), ops[idx1].desc.input_arg_names()))
        _logger.info("segment end op: [{}]: [{}]".format(
            ops[idx2 - 1].desc.type(), ops[idx2 - 1].desc.input_arg_names()))
J
JZ-LIANG 已提交
926

M
mapingshuo 已提交
927
    # 2) go through all forward ops and induct all variables that will be hold in memory
M
mapingshuo 已提交
928
    vars_should_be_hold = []
929
    # a. variables that are used across segments will be held in memory
M
mapingshuo 已提交
930 931 932
    for segment in recompute_segments:
        vars_should_be_hold.extend(
            program_stat.get_out_of_subgraph_vars(segment[0], segment[1]))
J
JZ-LIANG 已提交
933 934

    cross_vars = set(vars_should_be_hold) - set(checkpoints_name)
935
    _logger.info("found [{}] vars which cross recompute segment: [{}], better checkpoints might be set to reduce those vars".format( \
J
JZ-LIANG 已提交
936 937
    len(cross_vars), cross_vars))

M
mapingshuo 已提交
938
    # b. output of seed op should be kept in memory
M
mapingshuo 已提交
939
    vars_should_be_hold.extend(program_stat.get_reserved_vars())
M
mapingshuo 已提交
940
    # c. input variables are checkpoints
M
mapingshuo 已提交
941 942 943
    vars_should_be_hold.extend(program_stat.get_input_nodes())
    vars_should_be_hold = list(set(vars_should_be_hold))

M
mapingshuo 已提交
944
    # 3) go through each recompute_segments, add backward ops with forward recomputation
M
mapingshuo 已提交
945 946 947 948 949 950
    grad_op_descs = []
    var_name_dict = {}

    vars_in_memory = vars_should_be_hold + checkpoints_name

    max_calculated_op_position = len(ops)
951
    device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
M
mapingshuo 已提交
952 953 954 955 956 957 958 959 960
    if recompute_segments == []:
        gap_ops = ops[0:max_calculated_op_position]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
961 962 963 964 965 966

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

967 968 969 970 971
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
972 973
            added_descs = _add_descs_to_block(grad_op_desc, local_block,
                                              grad_op_id_to_fwd_op)
M
mapingshuo 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

    for i, segment in enumerate(recompute_segments[::-1]):
        gap_ops = ops[segment[1]:max_calculated_op_position]
        max_calculated_op_position = segment[0]
        for op in reversed(gap_ops):
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op.desc, cpt.to_text(no_grad_dict[block.idx]), [])
987 988 989 990 991 992

            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[op_desc.original_id()] = op

993 994 995 996 997
            # Set device for grad_op according to forward Op
            if op.desc.has_attr(device_attr_name):
                op_device = op.desc.attr(device_attr_name)
                for op_desc in grad_op_desc:
                    op_desc._set_attr(device_attr_name, op_device)
998 999
            added_descs = _add_descs_to_block(grad_op_desc, local_block,
                                              grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
            grad_op_descs.extend(added_descs)
            grad_to_var.update(op_grad_to_var)

        ff_ops = ops[segment[0]:segment[1]]
        var_suffix = ".subprog_%d" % i

        for op in ff_ops:
            if op.has_attr("sub_block"):
                raise Exception("Recompute don't support ops with sub_block"
                                "invoke op: %s" %
                                _pretty_op_desc_(op.desc, "with_sub_block"))
            input_and_output_names = []
            input_and_output_names.extend(op.desc.input_arg_names())
            input_and_output_names.extend(op.desc.output_arg_names())
            for name in input_and_output_names:
                if block.var(name).persistable or name in checkpoints_name:
                    continue
                if name in vars_should_be_hold:
                    continue
                if name not in var_name_dict:
                    var_name_dict[name] = name + var_suffix
1021 1022 1023

                    # we should create the rename var in subprog, otherwise its VarType will be BOOL
                    ref_var = block.program.global_block().var(name)
1024 1025 1026 1027 1028 1029
                    block.create_var(name=var_name_dict[name],
                                     shape=ref_var.shape,
                                     dtype=ref_var.dtype,
                                     type=ref_var.type,
                                     persistable=ref_var.persistable,
                                     stop_gradient=ref_var.stop_gradient)
1030

M
mapingshuo 已提交
1031
        # 3.a. add ops in current recompute_segment as forward recomputation ops
M
mapingshuo 已提交
1032
        buffer_descs = _add_needed_descs_to_block(ff_ops, buffer_block, block,
1033 1034 1035 1036
                                                  vars_in_memory,
                                                  grad_op_id_to_fwd_op)
        added_descs = _add_descs_to_block(ff_ops, local_block,
                                          grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1037

M
mapingshuo 已提交
1038
        # 3.b. rename all non-checkpoint variables in recomputation ops
M
mapingshuo 已提交
1039 1040 1041 1042 1043 1044
        for key in var_name_dict:
            _rename_arg_(buffer_descs, key, var_name_dict[key])

        # added_descs should be in grad_op_descs because it is backward op desc
        grad_op_descs.extend(buffer_descs)

1045
        # 3.c. add backward ops for all ops in current segment
M
mapingshuo 已提交
1046 1047 1048
        for op_desc in reversed(added_descs):
            grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
                op_desc, cpt.to_text(no_grad_dict[block.idx]), [])
1049

1050 1051 1052 1053 1054 1055
            # record the mapping between fwd and bwd
            if grad_op_id_to_fwd_op is not None:
                for g_op_desc in grad_op_desc:
                    grad_op_id_to_fwd_op[g_op_desc.original_id(
                    )] = grad_op_id_to_fwd_op[op_desc.original_id()]

1056 1057 1058 1059 1060 1061
            # Set device for grad_op according to forward Op
            if op_desc.has_attr(device_attr_name):
                op_device = op_desc.attr(device_attr_name)
                for g_op_desc in grad_op_desc:
                    g_op_desc._set_attr(device_attr_name, op_device)

M
mapingshuo 已提交
1062 1063 1064 1065 1066
            for key in var_name_dict:
                _rename_arg_(grad_op_desc, key, var_name_dict[key])
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)

M
mapingshuo 已提交
1067
    # 3.d. add sum op for repetitive_outputs
1068 1069
    grad_op_descs = _addup_repetitive_outputs_(
        grad_op_descs, block.idx, grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1070
    # 4) remove no grad branch as it is in _remove_no_grad_branch_
M
mapingshuo 已提交
1071
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
1072 1073 1074 1075
                                            no_grad_dict[block.idx],
                                            grad_op_id_to_fwd_op)
    added_descs = _add_descs_to_block(grad_op_descs, target_block,
                                      grad_op_id_to_fwd_op)
M
mapingshuo 已提交
1076 1077 1078
    return program_stat, checkpoints_name, vars_should_be_hold, recompute_segments


1079 1080 1081 1082 1083
def _get_sub_block_path(sub_block,
                        sub_block_op_desc,
                        no_grad_set,
                        op_path_dict,
                        sub_block_target_names=None):
1084 1085
    """
    Get output vars in subblock which will be assigned to parent block.
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    It is used to find the grad path in subblock.

    Args:
        sub_block(Block): The sub-block in which to get op path.
        sub_block_op_desc: The op desc of the sub-block op such as 'while', 'conditional_block' and 'recurrent'.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        sub_block_target_names(set): Target var names of sub-block.
    Return:
        The forward op path of sub-block corresponding to backward op.
1098
    """
1099

1100 1101 1102
    assert sub_block_op_desc.has_attr(
        "sub_block") and sub_block.idx == sub_block_op_desc._block_attr_id(
            "sub_block")
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    assert isinstance(sub_block_target_names, (set, type(None)))

    if sub_block_target_names is None:
        sub_block_target_names = sub_block_op_desc.output_arg_names

    # TODO(huihuangzheng): add support for recurrent op.
    if sub_block_op_desc.type in ["conditional_block", "while"]:
        # Step1: get the output vars in sub-block
        sub_outputs = [
            sub_block._var_recursive(var) for var in sub_block_target_names
        ]
        for var in sub_block_target_names:
1115
            for op_desc in sub_block.ops:
1116
                if var in op_desc.output_arg_names:
1117
                    for name in op_desc.input_arg_names:
1118
                        sub_outputs.append(sub_block._var_recursive(name))
1119

1120 1121
        # Step2: find op path of sub-block
        is_while = sub_block_op_desc.type in ["while"]
1122
        sub_block_op_path = _find_op_path_(sub_block, sub_outputs, [],
1123
                                           no_grad_set, op_path_dict, is_while)
1124 1125 1126 1127
        return sub_block_op_path
    return sub_block.ops


1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
def _is_grad_op_(op):
    op_maker = core.op_proto_and_checker_maker
    backward = core.op_proto_and_checker_maker.OpRole.Backward
    if op_maker.kOpRoleVarAttrName() in op.attr_names and \
            int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
        return True
    return False


def _rename_grad_name_(name, grad_order):
    return 'grad/' * grad_order + name


1141 1142
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
1143 1144 1145
                          target_block,
                          no_grad_dict,
                          grad_to_var,
1146
                          callbacks=None,
1147
                          input_grad_names_set=None,
1148
                          op_path_dict=None,
1149
                          distop_context=None,
1150 1151
                          rename_var_map=None,
                          grad_op_id_to_fwd_op=None):
1152 1153 1154 1155 1156
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
1157
        ops(Op): the forward operators whose backward ops need to be added
1158
        target_block(Block): the block which is going to hold new generated grad ops
1159
        no_grad_dict(dict):
1160
            key(int)  block index
T
tianshuo78520a 已提交
1161
            val(set) a set of variable names. These variables have no gradient
1162 1163 1164
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
C
chengduo 已提交
1165 1166 1167 1168
        callbacks(callable object): a callable object used to decorate new generated grad ops
        input_grad_names_set(set): this set is used to store the gradients' name which is
            generated by backward ops, and input_grad_names_set can help to prune the unnecessary
            backward ops.
1169 1170 1171
        op_path_dict(dict): op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
1172 1173
        rename_var_map(dict): used to associate target_grad var name with first grad_op input name.
            Only used in for high order gradient.
1174
    """
1175 1176 1177 1178 1179 1180 1181

    # Build the mapping between the forward op and backward op (Only for auto parallel)
    def update_distop_context(distop_context, op_grad_to_var,
                              appending_grad_times):
        distop_context.grad_var_to_var[appending_grad_times].update(
            op_grad_to_var)
        for op_desc in grad_op_desc:
1182 1183
            assert op_desc.original_id(
            ) not in distop_context.grad_op_id_to_op_id
1184 1185
            distop_context.grad_op_id_to_op_id[
                op_desc.original_id()] = op.desc.original_id()
1186

Y
Yang Yang 已提交
1187
    if callbacks is not None:
1188
        assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1189 1190 1191
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
1192

F
fengjiayi 已提交
1193
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
1194 1195
    grad_op_descs = []
    program = block.program
1196

1197 1198 1199
    if rename_var_map is None:
        rename_var_map = {}
    assert isinstance(rename_var_map, dict)
1200

1201
    # add grad_op_desc by reversed ops
1202
    for op in reversed(ops):
F
fengjiayi 已提交
1203 1204 1205
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
1206
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
1207
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
1208
            grad_sub_block._set_forward_block_idx(sub_block.idx)
1209 1210 1211
            # see follwing comments for why set None here.
            pre_input_grad_names_set = copy.copy(input_grad_names_set)
            input_grad_names_set = None
1212
            sub_block_path = op_path_dict[op._block_attr_id("sub_block")]
1213 1214 1215 1216 1217 1218 1219 1220 1221
            _append_backward_ops_(sub_block,
                                  sub_block_path,
                                  grad_sub_block,
                                  no_grad_dict,
                                  grad_to_var,
                                  callbacks,
                                  input_grad_names_set,
                                  op_path_dict,
                                  grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
1222
            input_grad_names_set = pre_input_grad_names_set
Y
Yu Yang 已提交
1223

W
Wu Yi 已提交
1224
            program._rollback()
F
fengjiayi 已提交
1225 1226
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
1227
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
1228
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
1229
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
1230

1231 1232 1233 1234 1235
        # record the mapping between fwd and bwd
        if grad_op_id_to_fwd_op is not None:
            for op_desc in grad_op_desc:
                grad_op_id_to_fwd_op[op_desc.original_id()] = op

1236
        # Build the mapping between the forward op and backward op (Only for auto parallel)
1237
        if distop_context is not None:
1238 1239 1240 1241 1242 1243 1244 1245 1246
            update_distop_context(distop_context, op_grad_to_var,
                                  program._appending_grad_times)
        else:
            default_ctx = getattr(paddle.distributed.auto_parallel.dist_context,
                                  '_g_default_distributed_context', None)
            if default_ctx is not None:
                distop_context = default_ctx.dist_op_context
                update_distop_context(distop_context, op_grad_to_var,
                                      program._appending_grad_times)
Y
Yang Yu 已提交
1247

1248 1249
        # Set device for grad_op according to forward Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
1250 1251 1252 1253
        if op.desc.has_attr(device_attr_name):
            op_device = op.desc.attr(device_attr_name)
            for op_desc in grad_op_desc:
                op_desc._set_attr(device_attr_name, op_device)
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        # Rename internal gradient variables in multiple backward
        # so that they have different names with previous backward.
        # For example:
        #  y = x * x, grad = fluid.gradients(fluid.gradients(y, x) + y * y, x)
        # In second-time backward, gradient variable names of partial
        # forward network (y * y) may be have same names with first-time
        # fluid.gradients(y, x).
        # So rename here before _addup_repetitive_outputs_.
        if program._appending_grad_times > 1:
            for op_desc in grad_op_desc:
T
Tongxin Bai 已提交
1265 1266 1267 1268
                forward_op_inputs = op.desc.input_arg_names()
                for name in op_desc.input_arg_names():
                    if name in rename_var_map and name not in forward_op_inputs:
                        op_desc._rename_input(name, rename_var_map[name])
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
                for name in op_desc.output_arg_names():
                    if "@GRAD" not in name:
                        continue
                    if block.desc.find_var(name.encode("ascii")):
                        new_name = _rename_grad_name_(
                            name, program._appending_grad_times)
                        op_desc._rename_output(name, new_name)
                        rename_var_map[name] = new_name

                        if name in op_grad_to_var:
1279 1280 1281 1282 1283
                            # Build the mapping between the grad var name and var name (Only for auto parallel)
                            if distop_context is not None:
                                distop_context.grad_var_to_var[
                                    program._appending_grad_times][
                                        new_name] = op_grad_to_var[name]
1284 1285 1286
                            op_grad_to_var[new_name] = op_grad_to_var[name]
                            op_grad_to_var.pop(name)

1287 1288 1289 1290 1291
        # If input_grad_names_set is not None, extend grad_op_descs only when
        # any input grad in outputs of previous grad ops.
        # But this strategy is not suited for while op for some control flow,
        # for example, for while op, the grads maybe generated in next loop.
        if input_grad_names_set is not None:
1292 1293
            is_grad_name = lambda name: name.find(core.grad_var_suffix(
            )) != -1 or name in input_grad_names_set
1294 1295 1296 1297
            is_append_grad = False
            for op_desc in grad_op_desc:
                input_grad_names = [
                    name for name in op_desc.input_arg_names()
1298
                    if is_grad_name(name)
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
                ]
                # some code of gradient ops, like increment, are not very
                # standard, there is no @GRAD in these ops' inputs.
                if len(input_grad_names) == 0:
                    is_append_grad = True
                    break

                if _some_in_set_(input_grad_names, input_grad_names_set):
                    grad_op_descs.append(op_desc)
                    is_append_grad = True
                    for name in op_desc.output_arg_names():
                        input_grad_names_set.add(name)
            if is_append_grad:
                grad_to_var.update(op_grad_to_var)
        else:
            grad_op_descs.extend(grad_op_desc)
            grad_to_var.update(op_grad_to_var)
F
fengjiayi 已提交
1316

1317 1318 1319 1320 1321
    # record mapping bewteen grad var name and var name (Only for auto parallel)
    grad_var_to_var = None
    if distop_context is not None:
        grad_var_to_var = distop_context.grad_var_to_var[
            program._appending_grad_times]
M
mapingshuo 已提交
1322
    # sum parameter's gradients' var given multiple var gradient
1323 1324 1325 1326 1327
    grad_op_descs = _addup_repetitive_outputs_(
        grad_op_descs,
        block.idx,
        grad_var_to_var,
        grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
F
fengjiayi 已提交
1328

M
mapingshuo 已提交
1329 1330
    # if all outputs of the grad op are in no_grad_set, then just remove and fill zero
    # if all inputs of the grad op are in no_grad_set, just remove this op
F
fengjiayi 已提交
1331
    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
1332 1333
                                            no_grad_dict[block.idx],
                                            grad_op_id_to_fwd_op)
F
fengjiayi 已提交
1334

M
mapingshuo 已提交
1335
    # remove some backward ops
C
chengduo 已提交
1336
    not_need_ops = _find_not_need_ops(grad_op_descs, ops, input_grad_names_set)
M
mapingshuo 已提交
1337

C
chengduo 已提交
1338 1339 1340
    grad_op_descs = [
        op_desc for op_desc in grad_op_descs if op_desc not in not_need_ops
    ]
1341

F
fengjiayi 已提交
1342
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
1343 1344
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
1345
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
1346 1347
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
1348
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
1349
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
1350
        if callbacks is not None:
1351
            assert (isinstance(callbacks, (list, tuple)))
Y
Yang Yang 已提交
1352 1353
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
1354

F
fengjiayi 已提交
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
def _is_grad_var_(var_name):
    return core.grad_var_suffix() in var_name


# Find the op who holds the sub_block as its "sub_block" attr
def _find_parent_op_(sub_block):
    sub_block_id = sub_block.idx

    if sub_block_id == 0:
        return None

    program = sub_block.program
    for block_id in six.moves.range(program.num_blocks):
        block_desc = program.block(block_id).desc
        for op_idx in six.moves.range(block_desc.op_size()):
            op = block_desc.op(op_idx)
            if op.has_attr("sub_block") and op._block_attr_id(
                    "sub_block") == sub_block_id:
                return op

1376
    # NOTE(paddle-dev): When optimizer is added in conditional block,
1377 1378 1379 1380
    # sub_block may not be found.
    return None


F
fengjiayi 已提交
1381
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
1394
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
1395
    """
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    ops_to_remove = []
    '''
    NOTE(paddle-dev): while_grad op may hold some inputs which are not found 
    in the parent/forward block, and they are also the outputs of while_grad 
    op. These kinds of inputs are the recursive outputs inside while_grad op. 
    They should be considered as "already created" when scanning the inner 
    ops of while_grad ops.  
    '''
    parent_op = _find_parent_op_(block)
    parent_op_vars = []
    if parent_op is not None:
        input_args = parent_op.input_arg_names()
        output_args = parent_op.output_arg_names()
        for in_arg in input_args:
            if in_arg in output_args:
                parent_op_vars.append(in_arg)

F
fengjiayi 已提交
1413 1414 1415
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
1416
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
1417
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

        grad_var_ins = [
            var for var in op_desc.input_arg_names() if _is_grad_var_(var)
        ]
        grad_var_outs = [
            var for var in op_desc.output_arg_names() if _is_grad_var_(var)
        ]

        inputs = [
            var for var in op_desc.input_arg_names()
            if var != core.empty_var_name()
        ]
        outputs = [
            var for var in op_desc.output_arg_names()
            if var != core.empty_var_name()
        ]

1435
        # If the outputs of grad op is empty, just remove it
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
        if not outputs:
            ops_to_remove.append(op_idx)
            continue
        else:
            '''
            If the output is not empty and there is any grad input, find 
            whether there is any existing input. If not, just remove it.
            '''
            if grad_var_ins:
                existing_grad_var_ins = [
                    var for var in grad_var_ins
1447 1448
                    if block.desc.has_var_recursive(cpt.to_bytes(var))
                    or var in parent_op_vars
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
                ]
                if not existing_grad_var_ins:
                    '''
                    FIXME(paddle-dev, zengjinle): rnn_memory_helper_grad is used
                    in recurrent op. The input of this op does not even exist in 
                    the program! Therefore, any dependency analysis would not 
                    work to this op! If I do not add the following code, this op
                    would be pruned, and the calculation result would be wrong. 
                    Maybe we should re-design this op later...  
                    '''
                    if op_desc.type() not in ['rnn_memory_helper_grad']:
                        ops_to_remove.append(op_idx)
1461
                        continue
1462

F
fengjiayi 已提交
1463 1464 1465
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
1466 1467
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
1468
                continue
M
minqiyang 已提交
1469
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
1470
            new_vars.add(grad_var_name)
1471
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
1472 1473 1474
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
H
hong 已提交
1475
        op_desc.check_attrs()
F
fengjiayi 已提交
1476 1477
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
1478

F
fengjiayi 已提交
1479 1480
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
1481
                _infer_var_data_type_shape_(arg, block)
F
update  
fengjiayi 已提交
1482

1483 1484 1485
    for op_idx in reversed(ops_to_remove):
        block.desc._remove_op(op_idx, op_idx + 1)

F
update  
fengjiayi 已提交
1486

1487 1488 1489 1490 1491 1492
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
1493
                op_desc._rename_input(name, var_map[name])
1494 1495

        for name in op_desc.output_arg_names():
M
mapingshuo 已提交
1496 1497
            if "@GRAD" not in name:
                continue
1498
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
1499
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
1500
                op_desc._rename_output(name, new_name)
1501 1502
                var_map[name] = new_name

M
minqiyang 已提交
1503
    for g, ng in six.iteritems(var_map):
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
1515
        for var in list(block.vars.values()):
1516 1517 1518 1519 1520 1521 1522
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
def _get_son_parent_block_idx_dict(program, current_block_idx):

    son_parent_block_idx_dict = collections.OrderedDict()
    while current_block_idx >= 0:
        parent_block_idx = program.block(current_block_idx).parent_idx
        son_parent_block_idx_dict[current_block_idx] = parent_block_idx
        current_block_idx = parent_block_idx

    return son_parent_block_idx_dict


1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
def _get_no_grad_set_name(no_grad_set):
    no_grad_set_name = set()
    if no_grad_set is not None:
        if isinstance(no_grad_set, (set, list, tuple)):
            for i, no_grad_var in enumerate(no_grad_set):
                if isinstance(no_grad_var, framework.Variable):
                    no_grad_set_name.add(no_grad_var.name)
                elif isinstance(no_grad_var, six.string_types):
                    no_grad_set_name.add(no_grad_var)
                else:
                    raise TypeError(
                        "The type of no_grad_set's member must be paddle.fluid.Variable or str, but received %s."
                        % (type(no_grad_var)))
        else:
            raise TypeError(
1549 1550
                "The type of no_grad_set should be set or list or tuple, but received {}"
                .format(type(no_grad_set)))
1551 1552 1553
    return no_grad_set_name


1554
@framework.static_only
M
mapingshuo 已提交
1555 1556 1557 1558
def append_backward(loss,
                    parameter_list=None,
                    no_grad_set=None,
                    callbacks=None,
1559 1560
                    checkpoints=None,
                    distop_context=None):
1561
    """
1562 1563
    :api_attr: Static Graph

1564
    This function appends backward part to main_program.
F
fengjiayi 已提交
1565

1566 1567
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
1568 1569
    specify its forward part. This function uses the chain rule to automatically
    generate the backward part according to the forward part.
F
fengjiayi 已提交
1570

1571 1572
    In most cases, users do not need to invoke this function manually.
    It will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
1573

1574
    Parameters:
1575
        loss(Tensor): The loss Tensor of the network.
1576
        parameter_list(list[Tensor|str]|tuple[Tensor|str], optional): List/Tuple of Parameters or Parameter.names
1577
                                           that need to be updated by optimizers.
1578
                                           If it is None, all parameters
F
fengjiayi 已提交
1579
                                           will be updated.
1580
                                           Default: None.
1581 1582
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
1583
                               `stop_gradient=True` from all blocks will
F
fengjiayi 已提交
1584
                               be automatically added into this set.
1585
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
1586
                               Default: None.
1587
        callbacks(list[callable object]|tuple[callable object], optional): List/Tuple of callback functions.
1588
                                               The callbacks are used for
1589 1590 1591 1592 1593 1594
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
Z
zhangchunle 已提交
1595
                                               object must have two input
1596 1597
                                               parameters: ``block`` and ``context`` .
                                               The ``block`` is the :ref:`api_guide_Block_en` which
1598
                                               the new gradient operator will
1599
                                               be added to. The ``context`` is a
1600
                                               map, whose keys are gradient
1601 1602 1603
                                               Tensor names and values are
                                               corresponding original :ref:`api_guide_tensor_en` .
                                               In addition to this, the ``context``
1604
                                               has another special key-value pair:
1605
                                               the key is string ``__current_op_desc__``
1606 1607 1608
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
1609
                                               Default: None.
F
fengjiayi 已提交
1610 1611

    Returns:
1612 1613
        list of tuple ( :ref:`api_guide_tensor_en` , :ref:`api_guide_tensor_en` ): Pairs of parameter and its corresponding gradients.
        The key is the parameter and the value is gradient Tensor.
F
fengjiayi 已提交
1614 1615

    Raises:
1616
        AssertionError: If ``loss`` is not an instance of Tensor.
F
fengjiayi 已提交
1617 1618 1619 1620

    Examples:
        .. code-block:: python

1621 1622
            import paddle
            import paddle.nn.functional as F
L
lujun 已提交
1623

1624 1625 1626 1627 1628
            paddle.enable_static()

            x = paddle.static.data(name='x', shape=[None, 13], dtype='int64')
            y = paddle.static.data(name='y', shape=[None, 1], dtype='float32')
            x_emb = paddle.static.nn.embedding(x, size=[100, 256])
1629
            y_predict = paddle.static.nn.fc(x=x_emb, size=1, activation=None, name='my_fc')
1630 1631
            loss = F.square_error_cost(input=y_predict, label=y)
            avg_loss = paddle.mean(loss)
1632 1633

            # Get all weights in main_program, not include bias.
1634
            all_weights = [param for param in paddle.static.default_main_program().block(0).all_parameters() if 'w_' in param.name]
1635 1636 1637
            all_weights_name = [w.name for w in all_weights]

            # return all param_grads needed to be updated if parameter_list set default None.
1638
            p_g_list1 = paddle.static.append_backward(loss=avg_loss)
1639 1640
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1641 1642
            # return the param_grads corresponding to parameter_list that can be list of param (Tensor).
            p_g_list2 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights)
1643 1644 1645
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # parameter_list can be list of param.name (str).
1646
            p_g_list3 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights_name)
1647 1648
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

1649 1650
            # no_grad_set can be set of Tensors that means grad will be cut off from these Tensors.
            p_g_list4 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set([x_emb]))
1651 1652
            # output: [(my_fc.w_0, my_fc.w_0@GRAD), (my_fc.b_0, my_fc.b_0@GRAD)]

1653 1654
            # no_grad_set can be set of Tensor.name when the Tensor is created inside layers and can't be specified explicitly.
            p_g_list5 = paddle.static.append_backward(loss=avg_loss, no_grad_set=set(['my_fc.b_0']))
1655 1656 1657
            # output: [(embedding_0.w_0, embedding_0.w_0@GRAD), (my_fc.w_0, my_fc.w_0@GRAD)]

            # return [] because all param_grads are filtered by no_grad_set.
1658
            p_g_list6 = paddle.static.append_backward(loss=avg_loss, parameter_list=all_weights, no_grad_set=set(all_weights))
1659

1660
    """
1661 1662 1663
    grad_op_id_to_fwd_op = {
    }  # for cuda graph usage, recording the mapping between grad op original id to fwd op

1664
    check_type(loss, 'loss', framework.Variable,
1665
               'paddle.static.append_backward')
Y
yuyang18 已提交
1666

Y
Fix bug  
yuyang18 已提交
1667 1668
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
M
mapingshuo 已提交
1669
        _find_loss_op_(loss)
Y
Fix bug  
yuyang18 已提交
1670

1671 1672 1673 1674
    loss.op._set_attr(
        core.op_proto_and_checker_maker.kOpRoleAttrName(),
        int(core.op_proto_and_checker_maker.OpRole.Forward)
        | int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
1675

Y
Yang Yang 已提交
1676
    if callbacks is not None:
1677
        check_type(callbacks, 'callbacks', (list, tuple),
1678
                   'paddle.static.append_backward')
Y
Yu Yang 已提交
1679

F
fengjiayi 已提交
1680
    program = loss.block.program
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    root_block = program.block(0)
    current_block_idx = program.current_block_idx
    current_block = program.block(current_block_idx)

    is_in_control_flow = current_block_idx != 0

    # Double grad is not supported in sub-block (control flow)
    if not is_in_control_flow:
        # _appending_grad_times used for double grad
        program._appending_grad_times += 1
1691

F
fengjiayi 已提交
1692
    if no_grad_set is None:
1693
        no_grad_set = set()
1694 1695
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
1696
    no_grad_dict = _get_stop_gradients_(program)
1697 1698
    # no_grad_set only contains vars in block 0
    # Todo(liym27): support vars in sub block
1699
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
    # Currently it is only to support the optimizer.minimize
    # in a switch branch, which can append_backward in a sub_block.
    # Note: while_loop is in control flow, but it makes no sense to call optimizer in while.
    # Todo: report error when it is in while_loop
    if is_in_control_flow:
        # create grad block if in switch control flow.
        target_grad_block = program._create_block(
            parent_idx=current_block.parent_idx)
        target_grad_block._set_forward_block_idx(current_block_idx)
        # after _create_block, program.current_block changes
    else:
        target_grad_block = root_block

    son_parent_block_idx_dict = _get_son_parent_block_idx_dict(
        program, current_block_idx)

    block_fwd_op_num_dict = {}  # block_id: fwd_op_num
    for idx in son_parent_block_idx_dict:
        block_fwd_op_num_dict[idx] = program.block(idx).desc.op_size()
F
fengjiayi 已提交
1720

F
fengjiayi 已提交
1721 1722
    grad_to_var = dict()

1723
    # pass the cuda_graph_attr to the fill_constant which generates the loss_grad
M
mapingshuo 已提交
1724
    op_desc = _create_loss_op_desc_(loss)
1725
    grad_op_id_to_fwd_op[op_desc.original_id()] = loss.op
1726 1727 1728 1729 1730 1731 1732
    target_grad_block.desc.append_op().copy_from(op_desc)

    for block_idx in son_parent_block_idx_dict:
        block = program.block(block_idx)

        block_no_grad_set = set(
            map(_strip_grad_suffix_, no_grad_dict[block_idx]))
1733 1734 1735 1736

        op_path_dict = dict()
        op_path = _find_op_path_(block, [loss], [], block_no_grad_set,
                                 op_path_dict)
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

        no_grad_vars = _find_no_grad_vars(block, op_path, [loss],
                                          block_no_grad_set)

        block_no_grad_set.update(no_grad_vars)
        no_grad_dict[block_idx].update(
            list(map(_append_grad_suffix_, block_no_grad_set)))

        input_grad_names_set = None
        # For double backward, input_grad_names is used for filtering
        # some non-used gradients op(s).

1749
        # TODO(liym27): need a better design.
1750 1751 1752 1753 1754
        # not support double grad in control flow sub-block now.
        if not is_in_control_flow:
            if program._appending_grad_times > 1:
                input_grad_names_set = set([_append_grad_suffix_(loss.name)])

1755
        # TODO: support _append_backward_ops_with_checkpoints_ in
1756
        #  sub-block (control flow)
J
JZ-LIANG 已提交
1757
        is_recompute = False
1758 1759 1760
        if checkpoints != None and \
                isinstance(checkpoints, list) and \
                len(checkpoints) > 0:
J
JZ-LIANG 已提交
1761
            is_recompute = True
1762
            program_stat, checkpoint_names, \
T
tangwei12 已提交
1763 1764
                vars_should_be_hold, \
                recompute_segments = \
1765 1766 1767 1768 1769 1770
                _append_backward_ops_with_checkpoints_(
                    root_block,
                    op_path,
                    root_block,
                    no_grad_dict,
                    grad_to_var,
1771 1772
                    checkpoints,
                    grad_op_id_to_fwd_op)
1773 1774 1775 1776 1777 1778 1779 1780
        else:
            _append_backward_ops_(
                block,  # the block where forward ops are in
                op_path,
                target_grad_block,
                no_grad_dict,
                grad_to_var,
                callbacks,
1781
                input_grad_names_set=input_grad_names_set,
1782
                op_path_dict=op_path_dict,
1783
                distop_context=distop_context,
1784
                grad_op_id_to_fwd_op=grad_op_id_to_fwd_op)
1785 1786 1787 1788 1789 1790 1791 1792 1793

    grad_info_map = dict()

    # if in control flow, target_grad_block is a created new block which only contains grad ops,
    # so fwd_op_num is set to 0.
    fwd_op_num = block_fwd_op_num_dict[
        current_block_idx] if not is_in_control_flow else 0

    # Because append_backward may be called multiple times,
1794 1795
    # we need rename the internal gradient variables so that they have
    # different names.
1796
    _rename_grad_(target_grad_block, fwd_op_num, grad_to_var, {})
1797

1798 1799
    _append_backward_vars_(target_grad_block, fwd_op_num, grad_to_var,
                           grad_info_map)
F
fengjiayi 已提交
1800

F
fengjiayi 已提交
1801
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
1802
    program._sync_with_cpp()
F
fengjiayi 已提交
1803

1804 1805 1806 1807 1808 1809
    # for cuda graph, copy the cuda graph attr from forward op to backward op
    for op in target_grad_block.ops:
        if grad_op_id_to_fwd_op.get(op.desc.original_id(), None) is not None:
            fwd_op = grad_op_id_to_fwd_op[op.desc.original_id()]
            op._cuda_graph_attr = fwd_op._cuda_graph_attr

1810
    if parameter_list is not None:
1811 1812
        check_type(parameter_list, 'parameter_list', (list, tuple, set),
                   'fluid.backward.append_backward')
1813 1814
        parameters = []
        for i, param in enumerate(parameter_list):
1815 1816
            check_type(param, 'parameter_list[%s]' % i,
                       (framework.Variable, six.string_types),
1817
                       'fluid.backward.append_backward')
1818 1819 1820 1821
            if isinstance(param, framework.Variable):
                parameters.append(param.name)
            elif isinstance(param, six.string_types):
                parameters.append(param)
1822
    else:
F
fengjiayi 已提交
1823
        params = program.global_block().all_parameters()
C
chengduo 已提交
1824
        parameters = [param.name for param in params if param.trainable]
1825

1826
    params_and_grads = []
1827
    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
1828
    for param in parameters:
M
minqiyang 已提交
1829
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
1830
            continue
F
update  
fengjiayi 已提交
1831
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
1832
        grad_block = grad_info[1]
1833 1834 1835 1836
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
1837
        param_var = program.global_block().var(param)
1838
        grad_var = grad_block.var(grad_info[0])
1839 1840 1841 1842 1843
        if not is_in_control_flow:
            if loss.block.has_var(grad_info[0]):
                params_and_grads.append((param_var, grad_var))
            else:
                params_and_grads.append((param_var, None))
1844
        else:
1845
            params_and_grads.append((param_var, grad_var))
Y
yuyang18 已提交
1846 1847 1848 1849

    for p, g in params_and_grads:
        if g is None:
            continue
1850 1851 1852
        ops = grad_block.ops if is_in_control_flow else program.global_block(
        ).ops
        for op in reversed(ops):
Y
yuyang18 已提交
1853 1854 1855 1856 1857 1858 1859
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
1860
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
1861 1862
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
1863
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
1864

J
JZ-LIANG 已提交
1865 1866 1867 1868
    if is_recompute:
        return params_and_grads, checkpoint_names
    else:
        return params_and_grads
1869 1870 1871 1872 1873


def _as_list(x):
    if x is None:
        return []
1874
    return list(x) if isinstance(x, Sequence) else [x]
1875 1876


1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
def _is_ancestor_block(ancestor_block, block):
    prog = block.program
    ancestor_idx = ancestor_block.idx
    parent_idx = block.parent_idx

    while parent_idx != -1:
        if parent_idx == ancestor_idx:
            return True
        parent_idx = prog.block(parent_idx).parent_idx

    return False


def _get_output_names(cur_block, targets):
    """
    In `cur_block`, get output names those linked to targets.
    NOTE:
    1. `targets` can be in `cur_block`;
    Usually, `targets` is in `cur_block`. However, considering control flow,
    2. `targets` may be in sub-block but `cur_block` is an ancestor of `targets[0].block`;
    3. `targets` may be in the block which is ancestor of `cur_block`.
    """

    block = targets[0].block if targets else cur_block
    current_output_names = set([out.name for out in targets])

1903 1904 1905 1906 1907 1908
    # 1. If `targets` in cur_block or the ancestral block of `cur_block`
    if block.idx == cur_block.idx or _is_ancestor_block(block, cur_block):
        return current_output_names

    # 2. If `cur_block` is an ancestor of `targets[0].block`, run while loop
    prog = cur_block.program
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
    while block.idx != cur_block.idx:
        assert block.parent_idx != -1
        parent_block = prog.block(block.parent_idx)

        parent_block_output_names = set()
        for op in reversed(block.ops):
            if _some_in_set_(op.desc.output_arg_names(), current_output_names):
                for name in op.desc.input_arg_names():
                    current_output_names.add(name)
                    if not block.desc.find_var(cpt.to_bytes(name)) \
                            and parent_block.desc.find_var(cpt.to_bytes(name)):
                        parent_block_output_names.add(name)

        block = parent_block
        current_output_names = parent_block_output_names

    return current_output_names


1928 1929 1930
def _find_no_grad_vars(block, op_path, targets, no_grad_set):
    """
    Find the vars which is not used in the program, and
1931
    those vars belong to no_grad_var.
1932
    """
1933
    output_names = _get_output_names(block, targets)
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
    no_grad_var = []
    for i, op in reversed(list(enumerate(op_path))):
        # If the op has sub_block, it is too complicated to find the correct no_grad_var.
        if not op.has_attr("sub_block"):
            for out_var in op.desc.output_arg_names():
                if out_var not in output_names and out_var not in op.desc.input_arg_names(
                ) and not block.vars[out_var].stop_gradient:
                    no_grad_var.append(out_var)
        for name in op.desc.input_arg_names():
            if name not in no_grad_set:
                output_names.add(name)
    return set(no_grad_var)


1948 1949 1950 1951 1952 1953
def _find_op_path_(block,
                   targets,
                   inputs,
                   no_grad_set,
                   op_path_dict=None,
                   is_while=False):
1954
    """
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    It is used to find the grad path in `block`.

    Args:
        block(Block): The block in which to get op path.
        targets(list[Variable]): The target variables.
        inputs(list[Variable]): The input variables.
        no_grad_set(set): The set of no grad var name. no_grad_set will be changed.
        op_path_dict(dict): op_path_dict will be changed. op_path_dict will be changed.
            key(int) block index
            val(list) the op path of block(index)
        is_while(bool): Whether or not `block` is while block
    Return:
        The forward op path of block corresponding to backward op.
1968
    """
1969

1970
    input_names = set([inp.name for inp in inputs])
1971 1972 1973
    output_names = _get_output_names(block, targets)
    if op_path_dict is None:
        op_path_dict = dict()
1974 1975 1976 1977 1978 1979

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
1980 1981 1982
            if _some_in_set_(op.desc.input_arg_names(),
                             input_names) and core.has_non_empty_grad_op_maker(
                                 op.type):
1983 1984 1985 1986 1987 1988 1989
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
1990 1991 1992 1993
        if op.has_attr("sub_block"):
            sub_block_id = op._block_attr_id("sub_block")
            sub_block = block.program.block(sub_block_id)
            sub_block_target_names = output_names & set(op.output_arg_names)
1994 1995
            sub_block_path = _get_sub_block_path(sub_block, op, set(),
                                                 op_path_dict,
1996 1997 1998
                                                 sub_block_target_names)
            op_path_dict[sub_block_id] = sub_block_path

1999 2000 2001
        if _some_in_set_(op.desc.output_arg_names(),
                         output_names) and core.has_non_empty_grad_op_maker(
                             op.type):
2002 2003 2004 2005 2006 2007
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

2008 2009 2010 2011 2012
    if is_while:
        # If block is while block, dealing with op specifically again.
        # TODO(liym27): Consider special types of ops.
        for i, op in reversed(list(enumerate(block.ops))):
            if relevant_op_flags[i] == False \
T
tangwei12 已提交
2013
                    and _some_in_set_(op.desc.output_arg_names(), output_names):
2014 2015
                relevant_op_flags[i] = True

2016 2017 2018 2019 2020 2021 2022
    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
2023
                if name not in input_names and block.vars[name].stop_gradient:
2024 2025 2026 2027 2028 2029 2030
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
2031
    Backpropagate the gradients of targets to inputs.
2032 2033

    Args:
2034 2035 2036
        targets(Tensor|list[Tensor]|tuple[Tensor]): The target Tensors
        inputs(Tensor|list[Tensor]|tuple[Tensor]): The input Tensors
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensors
2037 2038
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2039 2040
        no_grad_set(set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
                               should be ignored. All Tensors with
2041 2042
                               `stop_gradient=True` from all blocks will
                               be automatically added into this set.
2043
                               If this parameter is not None, the Tensors or Tensor.names in this set will be added to the default set.
2044
                               Default: None.
2045 2046

    Return:
2047 2048
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2049 2050 2051 2052 2053 2054 2055 2056
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
2057 2058
    # increase appending gradients times
    prog._appending_grad_times += 1
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
2070 2071
    else:
        no_grad_set = _get_no_grad_set_name(copy.copy(no_grad_set))
2072
    no_grad_dict = _get_stop_gradients_(prog)
2073
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
2074 2075 2076

    fwd_op_num = block.desc.op_size()

2077 2078
    input_grad_names_set = set()

2079
    target_grad_map = {}
2080
    rename_var_map = {}
2081 2082
    for i, grad in enumerate(target_gradients):
        target = targets[i]
2083
        grad_name = _append_grad_suffix_(target.name)
2084
        if grad is None:
L
lvmengsi 已提交
2085 2086 2087 2088 2089
            target_shape = target.name + '_shape'
            block.desc.append_op().copy_from(
                _create_op_desc_("shape", {'Input': [target.name]},
                                 {"Out": [target_shape]}, {}))
            input_grad_names_set.add(target_shape)
L
liym27 已提交
2090
            op_desc = _create_op_desc_("fill_constant",
L
lvmengsi 已提交
2091
                                       {"ShapeTensor": [target_shape]},
2092
                                       {"Out": [grad_name]}, {
2093
                                           "shape": target.shape,
2094 2095 2096
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                       })
L
liym27 已提交
2097

2098
            block.desc.append_op().copy_from(op_desc)
2099
            input_grad_names_set.add(grad_name)
2100 2101 2102 2103 2104
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
2105 2106
                    "The shapes of target and grad are different: %s %s" %
                    (target.name, grad.name))
2107
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name
2108
            input_grad_names_set.add(grad.name)
2109
            rename_var_map[grad_name] = grad.name
2110 2111

    # For double backward, input_grad_names is used for filter
2112 2113
    # some non-used gradients op. rename_var_map is used to
    # associate target_grad var name with first grad_op input name.
2114 2115
    if prog._appending_grad_times == 1:
        input_grad_names_set = None
2116
        rename_var_map = {}
2117 2118 2119 2120 2121 2122

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
2123 2124 2125 2126

    op_path_dict = dict()
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set,
                             op_path_dict)
2127 2128 2129 2130 2131 2132

    # find no grad var by op_path
    no_grad_vars = _find_no_grad_vars(block, op_path, targets,
                                      block_no_grad_set)
    block_no_grad_set.update(no_grad_vars)

2133
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
2134 2135
    grad_to_var = dict()
    grad_info_map = dict()
2136 2137 2138 2139 2140 2141 2142 2143
    _append_backward_ops_(block,
                          op_path,
                          block,
                          no_grad_dict,
                          grad_to_var,
                          input_grad_names_set=input_grad_names_set,
                          op_path_dict=op_path_dict,
                          rename_var_map=rename_var_map)
2144 2145 2146 2147 2148 2149 2150

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
2151
    prog._sync_with_cpp()
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars
2167 2168


2169
@framework.static_only
2170 2171
def gradients(targets, inputs, target_gradients=None, no_grad_set=None):
    """
T
tangwei12 已提交
2172

2173 2174 2175
    Backpropagate the gradients of targets to inputs.

    Args:
2176 2177 2178
        targets (Tensor|list[Tensor]|tuple[Tensor]): The target Tensors.
        inputs (Tensor|list[Tensor]|tuple[Tensor]): The input Tensors.
        target_gradients (Tensor|list[Tensor]|tuple[Tensor], optional): The gradient Tensor
2179 2180
            of targets which has the same shape with targets, If None, ones will
            be created for them.
2181 2182 2183
        no_grad_set (set[Tensor|str], optional): Set of Tensors or Tensor.names in the :ref:`api_guide_Block_en` 0 whose gradients
            should be ignored. All Tensors with ``stop_gradient=True`` from all blocks will
            be automatically added into this set. If this parameter is not None, the Tensors or Tensor.names
2184
            in this set will be added to the default set. Default: None.
2185 2186

    Return:
2187 2188
        (list[Tensor]): A list of gradients for inputs
        If an input does not affect targets, the corresponding gradient Tensor
2189 2190 2191
        will be None.

    Examples:
2192
    
2193
        .. code-block:: python
2194
          :name: code-example
2195 2196 2197 2198
            import paddle
            import paddle.nn.functional as F

            paddle.enable_static()
2199

2200
            x = paddle.static.data(name='x', shape=[None, 2, 8, 8], dtype='float32')
2201
            x.stop_gradient=False
2202 2203 2204
            y = paddle.static.nn.conv2d(x, 4, 1, bias_attr=False)
            y = F.relu(y)
            z = paddle.static.gradients([y], x)
2205
            print(z) # [var x@GRAD : LOD_TENSOR.shape(-1, 2, 8, 8).dtype(float32).stop_gradient(False)]
2206
    """
2207
    check_type(targets, 'targets', (framework.Variable, list, tuple),
2208
               'paddle.static.gradients')
2209
    check_type(inputs, 'inputs', (framework.Variable, list, tuple),
2210
               'paddle.static.gradients')
2211 2212 2213
    check_type(target_gradients, 'target_gradients',
               (framework.Variable, list, tuple, type(None)),
               'paddle.static.gradients')
2214

2215 2216 2217 2218 2219
    from ..incubate.autograd.primx import _gradients
    from ..incubate.autograd.utils import prim_enabled
    if prim_enabled():
        return _gradients(targets, inputs, target_gradients)

2220 2221
    outs = calc_gradient(targets, inputs, target_gradients, no_grad_set)
    return _as_list(outs)
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284


@framework.static_only
def gradients_with_optimizer(program, optimizer, inputs=None, outputs=None):
    """
    :api_attr: Static Graph

    Backpropagate the gradients of the program and apply the gradients with the given optimizer.

    Args:
        program (Program): The input program.
        optimizer (Optimizer): The optimizer to apply the gradients.
        inputs (Tensor|list[Tensor]|tuple[Tensor], optional): The input Tensors.
            If None, the inputs will be created from the input variables in the given program. Default:None.
        outputs (Tensor|list[Tensor]|tuple[Tensor], optional): The output Tensors.
            If None, the outputs will be created from the output variables in the given program. Default: None.

    Return:
        tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by gradients_with_optimizer and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
            ``fetch_list`` before run, see details in ``Executor``.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
            pred = static.nn.fc(x=img, size=10, activation='relu')
            loss = paddle.mean(pred)
            opt_ops, pram_grads = paddle.fluid.backward.gradients_with_optimizer(static.default_main_program(), opt)
            print(opt_ops)

    """
    check_type(program, 'program', paddle.fluid.Program,
               'paddle.static.gradients_with_optimizer')
    check_type(optimizer, 'optimizer', paddle.optimizer.Optimizer,
               'paddle.static.gradients_with_optimizer')

    if inputs is None or outputs is None:
        in_set = set()
        out_set = set()
        for block in program.blocks:
            for op in block.ops:
                for name in op.input_arg_names:
                    in_set.add(block.vars[name])
                for name in op.output_arg_names:
                    out_set.add(block.vars[name])
        if inputs is None:
            inputs = list(in_set.difference(out_set))
        if outputs is None:
            outputs = list(out_set.difference(in_set))

    grads = gradients(outputs, inputs)

    with program_guard(program, None):
        pram_grads = [(pram, grad) for pram, grad in zip(inputs, grads)
2285 2286
                      if isinstance(pram, paddle.fluid.framework.Parameter)
                      and grad is not None]
2287 2288 2289 2290

        optimize_ops = optimizer.apply_gradients(pram_grads)

    return optimize_ops, pram_grads