initializer.py 49.7 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import math
18
import functools
19
from . import framework
20
from . import core
21
from .framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph, default_main_program, _current_expected_place
22
from .lazy_init import lazy_init_helper
23
from .framework import program_guard
24
import numpy as np
25
from .core import VarDesc
W
Wu Yi 已提交
26
from . import unique_name
27
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
28
from paddle import _C_ops, _legacy_C_ops
29
import paddle
30

31
__all__ = [
32
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
33 34
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
35
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
36
]
37

38 39 40
_global_weight_initializer_ = None
_global_bias_initializer_ = None

41 42 43 44 45 46 47 48 49 50

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
51
    def __init__(self):
52 53
        pass

54
    def __call__(self, param, block=None):
55
        if not lazy_init_helper().state:
56 57 58 59 60
            return self.forward(param, block)

        return self._lazy_init(param, block)

    def forward(self, param, block=None):
61 62 63 64
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

65
    def _lazy_init(self, param, block=None):
66 67 68
        """
        Apply lazy initialization
        """
69 70
        assert in_dygraph_mode()

71 72 73 74 75 76
        def init_op_creator(forward, param, block):
            new_var = param._to_static_var(True, block=block)
            # Record initializer operator
            with lazy_init_helper():
                forward(new_var, block)

77
        # Add hook function for initializing param in dygraph mode
78 79 80
        param.set_init_func(functools.partial(self.forward, param, block))
        param._init_op_creator = functools.partial(init_op_creator,
                                                   self.forward, param)
81 82 83

        return param

84 85
    def _check_block(self, block):
        if block is None:
86
            block = default_main_program().global_block()
87 88 89

        return block

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

125 126 127

class ConstantInitializer(Initializer):
    """Implements the constant initializer
128 129

    Args:
D
Double_V 已提交
130
        value (float32): constant value to initialize the variable 
131 132 133 134

    Examples:
        .. code-block:: python

135 136 137
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
138
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
139 140 141 142
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
143

144 145
    """

146
    def __init__(self, value=0.0, force_cpu=False):
147 148 149
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
150
        self._force_cpu = force_cpu
151

152
    def forward(self, var, block=None):
153
        """Initialize the input tensor with constant.
154 155

        Args:
156 157 158
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
159 160

        Returns:
161
            The initialization op
162
        """
163 164
        block = self._check_block(block)

165 166
        assert (isinstance(var, framework.Variable)
                or isinstance(var, framework.EagerParamBase))
167
        assert isinstance(block, framework.Block)
168

169 170
        if in_dygraph_mode():
            place = _current_expected_place()
171 172
            if self._force_cpu:
                place = core.CPUPlace()
173 174
            _C_ops.full_(var, var.shape, str(float(self._value)), var.dtype,
                         place)
175 176
            return None
        elif _in_legacy_dygraph():
177 178 179 180 181
            _legacy_C_ops.fill_constant(var, 'value', float(self._value),
                                        'force_cpu', self._force_cpu, 'dtype',
                                        int(var.dtype), 'str_value',
                                        str(float(self._value)), 'shape',
                                        var.shape)
182 183
            return None
        else:
184 185 186 187 188 189 190 191 192 193
            op = block.append_op(type="fill_constant",
                                 outputs={"Out": var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": int(var.dtype),
                                     "value": float(self._value),
                                     'str_value': str(float(self._value)),
                                     'force_cpu': self._force_cpu
                                 },
                                 stop_gradient=True)
194

195
            var.op = op
196
            return op
197 198 199


class UniformInitializer(Initializer):
200
    """Implements the random uniform distribution initializer
201 202 203 204 205

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
206 207 208 209 210 211
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
212 213 214 215

    Examples:
        .. code-block:: python

X
xiaoting 已提交
216
            import paddle.fluid as fluid
217
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
218
            fc = fluid.layers.fc(input=x, size=10,
219
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
220 221
    """

222 223 224 225 226 227 228
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
229 230
        assert low is not None
        assert high is not None
231
        assert high >= low
232
        assert seed is not None
233 234 235 236 237
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
238 239 240 241
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
242 243 244
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
245

246
    def forward(self, var, block=None):
247
        """Initialize the input tensor with Uniform distribution.
248 249

        Args:
250 251 252
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
253 254

        Returns:
255
            The initialization op
256
        """
257 258
        block = self._check_block(block)

259
        assert isinstance(block, framework.Block)
260 261
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
262 263
                                 "uniform_random")

D
dzhwinter 已提交
264 265
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
266

X
polish  
Xin Pan 已提交
267
        # to be compatible of fp16 initializers
268
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
269
            out_dtype = VarDesc.VarType.FP32
270 271 272 273 274 275
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['uniform_random', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
W
Wu Yi 已提交
276 277 278 279
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
280
        if framework._non_static_mode():
281 282 283 284 285 286 287 288 289 290
            if in_dygraph_mode():
                out_var = _C_ops.uniform_random(var.shape, out_dtype, self._low,
                                                self._high, self._seed,
                                                _current_expected_place())
            elif _in_legacy_dygraph():
                out_var = _legacy_C_ops.uniform_random(
                    'shape', var.shape, 'min', self._low, 'max', self._high,
                    'seed', self._seed, 'dtype', out_dtype, 'diag_num',
                    self._diag_num, 'diag_step', self._diag_step, 'diag_val',
                    self._diag_val)
291
            if var.dtype == VarDesc.VarType.FP16:
292 293 294 295 296 297
                if in_dygraph_mode():
                    var_tmp = _C_ops.cast(out_var, var.dtype)
                elif _in_legacy_dygraph():
                    var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype',
                                                 out_var.dtype, 'out_dtype',
                                                 var.dtype)
298
                var_tmp._share_underline_tensor_to(var)
299
            else:
300
                out_var._share_underline_tensor_to(var)
301 302
            return None
        else:
303 304 305 306 307 308 309 310 311 312 313 314 315 316
            op = block.append_op(type="uniform_random",
                                 inputs={},
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "min": self._low,
                                     "max": self._high,
                                     "seed": self._seed,
                                     "diag_num": self._diag_num,
                                     "diag_step": self._diag_step,
                                     "diag_val": self._diag_val
                                 },
                                 stop_gradient=True)
317 318

            if var.dtype == VarDesc.VarType.FP16:
319 320 321 322 323 324 325
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
W
Wu Yi 已提交
326

327
            var.op = op
328
            return op
329 330 331


class NormalInitializer(Initializer):
332 333 334 335 336 337 338 339 340 341
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
342
            import paddle.fluid as fluid
343
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
344 345
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
346

347 348 349 350 351 352 353 354 355 356 357
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

358
    def forward(self, var, block=None):
359
        """Initialize the input tensor with Normal distribution.
360 361

        Args:
362 363 364
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
365 366

        Returns:
367
            The initialization op
368
        """
369 370
        block = self._check_block(block)

371
        assert isinstance(block, framework.Block)
372

373 374
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
375
                                 "guassian_random")
376

D
dzhwinter 已提交
377 378
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
379

380 381
        if in_dygraph_mode():
            place = _current_expected_place()
382 383
            out_var = _C_ops.gaussian_random(var.shape, self._mean,
                                             self._std_dev, self._seed,
384 385
                                             var.dtype, place)
            out_var._share_underline_tensor_to(var)
386 387 388
            return None

        if _in_legacy_dygraph():
389
            out_var = _legacy_C_ops.gaussian_random(
390
                'shape', var.shape, 'dtype', var.dtype, 'mean', self._mean,
391
                'std', self._std_dev, 'seed', self._seed, 'use_mkldnn', False)
392

393
            out_var._share_underline_tensor_to(var)
394 395
            return None
        else:
396
            op = block.append_op(type="gaussian_random",
397
                                 outputs={"Out": var},
398 399
                                 attrs={
                                     "shape": var.shape,
400
                                     "dtype": var.dtype,
401 402 403 404 405 406
                                     "mean": self._mean,
                                     "std": self._std_dev,
                                     "seed": self._seed,
                                     "use_mkldnn": False
                                 },
                                 stop_gradient=True)
407
            var.op = op
408
            return op
409 410


411 412 413 414 415 416 417 418 419 420 421
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
422
            import paddle.fluid as fluid
423
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
424 425 426 427 428 429 430 431
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
432
        super(TruncatedNormalInitializer, self).__init__()
433 434 435 436
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

437
    def forward(self, var, block=None):
438
        """Initialize the input tensor with TruncatedNormal distribution.
439 440

        Args:
441 442 443
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
444 445

        Returns:
446
            The initialization op
447
        """
448 449
        block = self._check_block(block)

450 451
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
452

453 454
        if self._seed == 0:
            self._seed = block.program.random_seed
455 456

        # to be compatible of fp16 initalizers
457
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
458
            out_dtype = VarDesc.VarType.FP32
459 460 461 462 463 464
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['truncated_gaussian_random', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
465 466 467 468
        else:
            out_dtype = var.dtype
            out_var = var

469
        if in_dygraph_mode():
470
            out_var = _C_ops.truncated_gaussian_random(
471 472 473
                var.shape, self._mean, self._std_dev, self._seed, out_dtype,
                _current_expected_place())
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
474
                var_tmp = _C_ops.cast(out_var, var.dtype)
475 476 477 478 479 480
                var_tmp._share_underline_tensor_to(var)
            else:
                out_var._share_underline_tensor_to(var)
            return None

        if _in_legacy_dygraph():
481 482 483
            out_var = _legacy_C_ops.truncated_gaussian_random(
                'shape', var.shape, 'dtype', out_dtype, 'mean', self._mean,
                'std', self._std_dev, 'seed', self._seed)
484
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
485 486
                var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype', out_var.dtype,
                                             'out_dtype', var.dtype)
487
                var_tmp._share_underline_tensor_to(var)
488
            else:
489
                out_var._share_underline_tensor_to(var)
490 491
            return None
        else:
492 493 494 495 496 497 498 499 500 501
            op = block.append_op(type="truncated_gaussian_random",
                                 outputs={"Out": out_var},
                                 attrs={
                                     "shape": var.shape,
                                     "dtype": out_dtype,
                                     "mean": self._mean,
                                     "std": self._std_dev,
                                     "seed": self._seed
                                 },
                                 stop_gradient=True)
502

503
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
504 505 506 507 508 509 510
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
511
            var.op = op
512
            return op
513 514


515
class XavierInitializer(Initializer):
516
    r"""
517
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
518 519 520
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
521 522 523

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
524 525 526 527 528 529
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

530
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
531
    is
532

Q
qiaolongfei 已提交
533
    .. math::
534

Q
qiaolongfei 已提交
535
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
536 537


Q
qiaolongfei 已提交
538
    Args:
X
xiaoting 已提交
539 540
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
541
                inferred from the variable.
X
xiaoting 已提交
542
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
543 544 545 546 547 548 549 550 551
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
552
            import paddle.fluid as fluid
X
xiaoting 已提交
553
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
554 555 556 557 558 559 560
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
561 562 563 564 565 566 567 568
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

569
    def forward(self, var, block=None):
570
        """Initialize the input tensor with Xavier initialization.
571 572

        Args:
573 574 575
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
576 577

        Returns:
578
            The initialization op
579
        """
580 581
        block = self._check_block(block)

582
        assert isinstance(block, framework.Block)
583 584
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
585 586
                                 "xavier_init")

587 588 589 590 591 592
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
593 594 595
        if self._seed == 0:
            self._seed = block.program.random_seed

596
        # to be compatible of fp16 initalizers
597 598
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
599
            out_dtype = VarDesc.VarType.FP32
600 601 602 603 604 605
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['xavier_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
606 607 608 609
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
610
        if framework._non_static_mode():
611
            if self._uniform:
612
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
613
                if in_dygraph_mode():
614 615 616
                    out_var = _C_ops.uniform_random(out_var.shape, out_dtype,
                                                    -limit, limit, self._seed,
                                                    _current_expected_place())
617
                elif _in_legacy_dygraph():
618 619 620
                    out_var = _legacy_C_ops.uniform_random(
                        'shape', out_var.shape, 'min', -limit, 'max', limit,
                        'seed', self._seed, 'dtype', out_dtype)
621
            else:
622
                std = math.sqrt(2.0 / float(fan_in + fan_out))
623 624 625

                if in_dygraph_mode():
                    place = _current_expected_place()
626 627 628
                    out_var = _C_ops.gaussian_random(out_var.shape, 0.0, std,
                                                     self._seed, out_dtype,
                                                     place)
629
                else:
630 631 632
                    out_var = _legacy_C_ops.gaussian_random(
                        'shape', out_var.shape, 'dtype', out_dtype, 'mean', 0.0,
                        'std', std, 'seed', self._seed)
633 634 635

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
636
                if in_dygraph_mode():
637
                    var_tmp = _C_ops.cast(out_var, var.dtype)
638
                elif _in_legacy_dygraph():
639 640 641
                    var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype',
                                                 out_var.dtype, 'out_dtype',
                                                 var.dtype)
642
                var_tmp._share_underline_tensor_to(var)
643
            else:
644
                out_var._share_underline_tensor_to(var)
645
            return None
646
        else:
647
            if self._uniform:
648
                limit = math.sqrt(6.0 / float(fan_in + fan_out))
649 650 651 652 653 654 655 656 657 658 659
                op = block.append_op(type="uniform_random",
                                     inputs={},
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": out_dtype,
                                         "min": -limit,
                                         "max": limit,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
660
            else:
661
                std = math.sqrt(2.0 / float(fan_in + fan_out))
662 663 664 665
                op = block.append_op(type="gaussian_random",
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
666
                                         "dtype": out_var.dtype,
667 668 669 670 671
                                         "mean": 0.0,
                                         "std": std,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
672 673 674

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
675 676 677 678 679 680 681
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
682

683
            var.op = op
684
            return op
685 686 687


class MSRAInitializer(Initializer):
688
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
689 690

    This class implements the weight initialization from the paper
691 692 693 694 695 696 697 698
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

699
        x = gain \times \sqrt{\frac{3}{fan\_in}}
700 701 702 703 704 705

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

706
        \frac{gain}{\sqrt{{fan\_in}}}
707 708

    Args:
709 710 711
        uniform (bool, optional): whether to use uniform or normal distribution
        fan_in (float32|None, optional): fan_in (in_features) of trainable Tensor, If None, it will be infered automaticly. If you don't want to use in_features of the Tensor, you can set the value of 'fan_in' smartly by yourself. default is None.
        seed (int32, optional): random seed.
712 713
        negative_slope (float, optional): negative_slope (only used with leaky_relu). default is 0.0.
        nonlinearity(str, optional): the non-linear function. default is relu.
714 715 716 717 718 719

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
720

721
            import paddle
X
xsrobin 已提交
722
            import paddle.fluid as fluid
723
            paddle.enable_static()
D
Double_V 已提交
724
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
725 726
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
727

728 729
    """

730 731 732 733 734 735
    def __init__(self,
                 uniform=True,
                 fan_in=None,
                 seed=0,
                 negative_slope=0,
                 nonlinearity='relu'):
736 737 738 739 740 741 742 743
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed
744 745
        self._negative_slope = negative_slope
        self._nonlinearity = nonlinearity
746

747
    def forward(self, var, block=None):
748
        """Initialize the input tensor with MSRA initialization.
749 750

        Args:
751 752 753
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
754 755

        Returns:
756
            The initialization op
757
        """
758 759
        block = self._check_block(block)

760 761 762 763 764 765 766
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
767 768 769
        if self._seed == 0:
            self._seed = block.program.random_seed

770
        # to be compatible of fp16 initalizers
771 772
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
773
            out_dtype = VarDesc.VarType.FP32
774 775 776 777 778 779
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['masra_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
780 781 782 783
        else:
            out_dtype = var.dtype
            out_var = var

J
Jiabin Yang 已提交
784
        if framework._non_static_mode():
785
            if self._uniform:
786 787
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))
788 789 790 791 792 793 794 795
                if in_dygraph_mode():
                    out_var = _C_ops.uniform_random(var.shape, out_dtype,
                                                    -limit, limit, self._seed,
                                                    _current_expected_place())
                else:
                    out_var = _legacy_C_ops.uniform_random(
                        'shape', out_var.shape, 'min', -limit, 'max', limit,
                        'seed', self._seed, 'dtype', int(out_dtype))
796
            else:
797 798
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
799 800
                if in_dygraph_mode():
                    place = _current_expected_place()
801 802 803
                    out_var = _C_ops.gaussian_random(out_var.shape, 0.0, std,
                                                     self._seed, out_dtype,
                                                     place)
804
                else:
805 806 807
                    out_var = _legacy_C_ops.gaussian_random(
                        'shape', out_var.shape, 'dtype', int(out_dtype), 'mean',
                        0.0, 'std', std, 'seed', self._seed)
808 809 810

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
811 812 813 814 815 816
                if in_dygraph_mode():
                    var_tmp = _C_ops.cast(out_var, var.dtype)
                elif _in_legacy_dygraph():
                    var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype',
                                                 out_var.dtype, 'out_dtype',
                                                 var.dtype)
817
                var_tmp._share_underline_tensor_to(var)
818
            else:
819
                out_var._share_underline_tensor_to(var)
820
            return None
821
        else:
822
            if self._uniform:
823 824
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                limit = gain * math.sqrt(3.0 / float(fan_in))
825 826 827 828 829 830 831 832 833 834 835
                op = block.append_op(type="uniform_random",
                                     inputs={},
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "min": -limit,
                                         "max": limit,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
836 837

            else:
838 839
                gain = calculate_gain(self._nonlinearity, self._negative_slope)
                std = gain / math.sqrt(float(fan_in))
840 841 842 843 844 845 846 847 848 849
                op = block.append_op(type="gaussian_random",
                                     outputs={"Out": out_var},
                                     attrs={
                                         "shape": out_var.shape,
                                         "dtype": int(out_dtype),
                                         "mean": 0.0,
                                         "std": std,
                                         "seed": self._seed
                                     },
                                     stop_gradient=True)
850 851 852

            if var.dtype == VarDesc.VarType.FP16 or (
                    var.dtype == VarDesc.VarType.BF16 and not self._uniform):
853 854 855 856 857 858 859
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
860

861
            var.op = op
862
            return op
863 864


865
class BilinearInitializer(Initializer):
866
    """
867 868 869
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
870 871 872 873 874

    Examples:

        .. code-block:: python

875
            import math
876 877 878 879 880

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
881 882
            factor = 2
            C = 2
D
Double_V 已提交
883 884
            B = 8
            H = W = 32
885 886 887 888
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
889
            conv_up = nn.Conv2DTranspose(3,
890 891 892 893 894 895 896 897 898 899 900
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
901 902 903 904
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
905 906
    interpolation unchanged during training.

907 908 909 910 911 912 913
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

914
    def forward(self, var, block=None):
915
        """Initialize the input tensor with Bilinear initialization.
916 917

        Args:
918 919 920
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
921 922

        Returns:
923
            The initialization op
924
        """
925 926
        block = self._check_block(block)

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

951
        # to be compatible of fp16 initalizers
952 953 954
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
955
            out_dtype = VarDesc.VarType.FP32
956 957 958 959 960 961
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['bilinear_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
962 963 964 965 966
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
967 968 969
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
970 971
            raise TypeError("Unsupported dtype %s", var.dtype)

972 973
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
974

J
Jiabin Yang 已提交
975
        if framework._non_static_mode():
976 977 978 979 980 981 982
            if in_dygraph_mode():
                _C_ops.assign_value_(out_var, list(shape), out_dtype, values,
                                     _current_expected_place())
            elif _in_legacy_dygraph():
                _legacy_C_ops.assign_value(out_var, 'shape', list(shape),
                                           'dtype', out_dtype, value_name,
                                           values)
983 984 985 986
            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
987 988 989 990 991 992
                if in_dygraph_mode():
                    var_tmp = _C_ops.cast(out_var, var.dtype)
                elif _in_legacy_dygraph():
                    var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype',
                                                 out_var.dtype, 'out_dtype',
                                                 var.dtype)
993
                var_tmp._share_underline_tensor_to(var)
994
            else:
995
                out_var._share_underline_tensor_to(var)
996 997
            return None
        else:
998 999 1000 1001 1002 1003 1004
            op = block.append_op(type='assign_value',
                                 outputs={'Out': [out_var]},
                                 attrs={
                                     'dtype': out_dtype,
                                     'shape': list(shape),
                                     value_name: values
                                 })
1005 1006 1007 1008 1009

            if var.dtype in [
                    VarDesc.VarType.FP16, VarDesc.VarType.BF16,
                    VarDesc.VarType.FP64
            ]:
1010 1011 1012 1013 1014 1015 1016
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
1017

1018
            var.op = op
1019
            return op
1020 1021


1022 1023
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
1024
    This op initialize the variable by numpy array.
1025 1026 1027 1028

    Args:
        value (numpy): numpy array to initialize the variable

1029 1030 1031
    Returns:
        A Tensor variable initialized by numpy.

1032 1033 1034
    Examples:
        .. code-block:: python

1035
            import paddle.fluid as fluid
1036 1037
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

1048
    def forward(self, var, block=None):
1049
        """Initialize the input tensor with Numpy array.
1050 1051

        Args:
1052 1053 1054
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
1055 1056

        Returns:
1057
            The initialization op
1058
        """
1059 1060
        block = self._check_block(block)

1061 1062
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
1063 1064

        # to be compatible of fp16 initalizers
1065
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1066 1067
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
1068 1069 1070 1071 1072 1073
            out_var = block.create_var(name=unique_name.generate(".".join(
                ['numpy_array_init', var.name, 'tmp'])),
                                       shape=var.shape,
                                       dtype=out_dtype,
                                       type=VarDesc.VarType.LOD_TENSOR,
                                       persistable=False)
1074 1075 1076 1077 1078 1079
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
1080
            value_name = "fp32_values"
1081 1082
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
1083
            value_name = "int32_values"
1084
            values = [int(v) for v in np_value.flat]
1085 1086
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
1087
        if self._value.size > 1024 * 1024 * 1024:
1088 1089
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
1090

J
Jiabin Yang 已提交
1091
        if framework._non_static_mode():
1092 1093 1094 1095 1096 1097 1098 1099
            if in_dygraph_mode():
                _C_ops.assign_value_(out_var,
                                     list(self._value.shape), out_dtype, values,
                                     _current_expected_place())
            elif _in_legacy_dygraph():
                _legacy_C_ops.assign_value(out_var, 'shape',
                                           list(self._value.shape), 'dtype',
                                           out_dtype, value_name, values)
1100
            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1101 1102 1103 1104 1105 1106
                if in_dygraph_mode():
                    var_tmp = _C_ops.cast(out_var, var.dtype)
                elif _in_legacy_dygraph():
                    var_tmp = _legacy_C_ops.cast(out_var, 'in_dtype',
                                                 out_var.dtype, 'out_dtype',
                                                 var.dtype)
1107
                var_tmp._share_underline_tensor_to(var)
1108
            else:
1109
                out_var._share_underline_tensor_to(var)
1110 1111
            return None
        else:
1112 1113 1114 1115 1116 1117 1118 1119
            op = block.append_op(type='assign_value',
                                 outputs={'Out': out_var},
                                 attrs={
                                     'dtype': out_dtype,
                                     'shape': list(self._value.shape),
                                     value_name: values
                                 },
                                 stop_gradient=True)
1120 1121

            if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
1122 1123 1124 1125 1126 1127 1128
                block.append_op(type="cast",
                                inputs={"X": out_var},
                                outputs={"Out": var},
                                attrs={
                                    "in_dtype": out_var.dtype,
                                    "out_dtype": var.dtype
                                })
1129

1130
            var.op = op
1131
            return op
1132 1133


1134 1135 1136 1137 1138 1139 1140
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
1141
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

1161 1162 1163 1164 1165
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
1166 1167 1168

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
1169 1170
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
1171 1172 1173 1174

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1175 1176 1177 1178
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1179 1180

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1181
            nn.initializer.set_global_initializer(None)
1182
    """
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1209 1210
def calculate_gain(nonlinearity, param=None):
    """
1211 1212
    Get the recommended ``gain`` value of some nonlinearity function. ``gain`` value can be used in some 
    ``paddle.nn.initializer`` api to adjust the initialization value.
1213 1214

    Args:
1215 1216
        nonlinearity(str): name of nonlinearity activation function. If it is a linear function, such as: 
            `linear/conv1d/conv2d/conv3d/conv1d_transpose/conv2d_transpose/conv3d_transpose` , 1.0 will be returned.
1217
        param(bool|int|float, optional): optional parameter for somme nonlinearity function. Now, it only applies to 
1218
            'leaky_relu'. Default: None, it will be calculated as 0.01 in the formula.
1219 1220

    Returns:
1221
        A float value, which is the recommended gain for this nonlinearity function.
1222 1223 1224

    Examples:
        .. code-block:: python
1225

1226 1227 1228
            import paddle
            gain = paddle.nn.initializer.calculate_gain('tanh') # 5.0 / 3
            gain = paddle.nn.initializer.calculate_gain('leaky_relu', param=1.0) # 1.0 = math.sqrt(2.0 / (1+param^2))
1229
            initializer = paddle.nn.initializer.Orthogonal(gain)
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

    """
    if param is None:
        param = 0.01
    else:
        assert isinstance(param, (bool, int, float))
        param = float(param)
    recommended_gain = {
        'sigmoid': 1,
        'linear': 1,
        'conv1d': 1,
        'conv2d': 1,
        'conv3d': 1,
1243 1244 1245
        'conv1d_transpose': 1,
        'conv2d_transpose': 1,
        'conv3d_transpose': 1,
1246 1247 1248 1249 1250 1251 1252 1253
        'tanh': 5.0 / 3,
        'relu': math.sqrt(2.0),
        'leaky_relu': math.sqrt(2.0 / (1 + param**2)),
        'selu': 3.0 / 4
    }
    if nonlinearity in recommended_gain.keys():
        return recommended_gain[nonlinearity]
    else:
1254 1255 1256
        raise ValueError(
            "nonlinearity function {} is not suppported now.".format(
                nonlinearity))
1257 1258


1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1271
TruncatedNormal = TruncatedNormalInitializer
1272 1273
Xavier = XavierInitializer
MSRA = MSRAInitializer
1274
Bilinear = BilinearInitializer