nn.py 63.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69
    'fc',
    'embedding',
    'row_conv',
    'layer_norm',
D
dengkaipeng 已提交
70
    'spectral_norm',
X
Xin Pan 已提交
71 72 73 74 75 76
    'one_hot',
    'autoincreased_step_counter',
    'lod_reset',
    'clip',
    'clip_by_norm',
    'mul',
C
chengduo 已提交
77 78
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
Y
Yu Yang 已提交
79 80
]

81
OP_NAMEMAPPING = {
82 83 84 85 86 87 88 89
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
90
    'elementwise_mod': 'remainder',
91 92
}

Y
Yu Yang 已提交
93

94 95
def _get_reduce_dim(dim, input):
    """
96
    Internal function for reduce_sum, reduce_mean, reduce_prod.
97 98 99 100 101 102 103 104 105
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
106
                "The type of dim must be int, list, tuple or range, but received {}".format(
107
                    type(dim)
108 109
                )
            )
110 111 112 113 114 115 116 117 118 119
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


120
@dygraph_only
121 122 123
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
124 125 126 127
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
128
        op = getattr(_legacy_C_ops, op_name)
129 130 131
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
132 133
            op = getattr(
                _C_ops,
134 135
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
136 137 138
            out = op(x, y)

        if _in_legacy_dygraph():
139
            op = getattr(_legacy_C_ops, op_name)
140
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
141 142 143 144 145 146 147 148 149 150 151 152 153 154
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
155
    r"""
156 157
    :api_attr: Static Graph

158
    **Fully Connected Layer**
Y
Yu Yang 已提交
159

160 161 162
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
163
    which represents a fully connected weight matrix from each input unit to
164 165 166 167
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
168
    is not None, a bias variable will be created and added to the output.
169
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
170

171
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
172

173 174 175 176
    .. math::

        Out = Act({XW + b})

177
    When the input is a list of Tensor(or LoDTensor):
178 179 180

    .. math::

181
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
182 183 184

    In the above equation:

185 186 187
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
188
    * :math:`b`: The bias parameter created by this layer (if needed).
189
    * :math:`Act`: The activation function.
190
    * :math:`Out`: The output Tensor.
191 192 193

    .. code-block:: text

194 195 196 197 198 199 200 201 202 203 204 205 206 207
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
208 209 210 211 212 213 214 215 216 217 218 219 220
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
221
    Args:
222 223 224
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
225
        size(int): The number of output units in this layer, which also means the feature size of output
226 227
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
228
            two dimensions. If this happens, the multidimensional tensor will first be flattened
229 230
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
231
            dimensions will be flatten to form the first dimension of the final matrix (height of
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
247 248

    Raises:
249
        ValueError: If dimensions of the input Tensor is less than 2.
250 251 252 253

    Examples:
        .. code-block:: python

254
          import paddle.fluid as fluid
255 256
          import paddle
          paddle.enable_static()
257
          # when input is single tensor
258
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
259
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
260 261

          # when input are multiple tensors
262 263
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
264
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
265
    """
C
caoying03 已提交
266
    helper = LayerHelper("fc", **locals())
267
    check_type(input, 'input', (list, tuple, Variable), 'fc')
268 269
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
270
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
271
    dtype = helper.input_dtype()
272 273 274
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
275
    mul_results = []
276 277
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
278 279
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
280 281 282
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
283

284 285 286
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
287
        tmp = helper.create_variable_for_type_inference(dtype)
288 289 290 291 292 293
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
294 295 296 297
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
298
    else:
X
Xin Pan 已提交
299
        pre_bias = helper.create_variable_for_type_inference(dtype)
300 301 302 303 304 305
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
306 307 308 309
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
310 311


T
tangwei12 已提交
312
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
313 314 315 316 317 318 319 320 321
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
322
    r"""
323
    :api_attr: Static Graph
324

325 326 327 328 329 330 331 332 333 334 335 336
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

337
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
355

356 357 358 359
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
360

361
        Case 2:
362

363 364 365 366 367 368 369 370 371 372 373 374 375 376
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
377 378

    Args:
379 380 381 382 383 384
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
385
            affects the performance of the backwards gradient update. It is recommended to set
386
            True because sparse update is faster. But some optimizer does not support sparse update,
387
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
388 389 390 391 392
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
393
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
394 395 396 397 398 399
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
400
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
401
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
402
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
403 404 405
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
406

407
    Returns:
408
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
409

410 411
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
412

B
bdzhuxiaoning 已提交
413
          import paddle.fluid as fluid
414
          import numpy as np
415 416
          import paddle
          paddle.enable_static()
417

418 419
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
420
          # example 1
421 422 423 424 425 426 427 428 429
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
430
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
431 432 433
    """

    helper = LayerHelper('embedding', **locals())
434 435 436 437 438 439 440 441 442
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
443 444 445 446 447 448 449 450 451

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

452 453 454
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
455
    tmp = helper.create_variable_for_type_inference(dtype)
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
474 475 476
    return tmp


477 478 479 480 481 482 483 484 485 486 487
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
488
    r"""
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
534
        'is_distributed': True,
535 536
    }
    # this is only for compatible with embedding op
537 538 539 540 541 542 543 544 545
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
546 547 548 549 550
    if len(outs) == 1:
        return outs[0]
    return outs


551 552 553 554 555 556 557 558 559 560 561
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
562
    r"""
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
608
        'is_distributed': True,
609 610
    }
    # this is only for compatible with embedding op
611 612 613 614 615 616 617 618 619
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
620
    if len(outs) == 1:
Y
yaoxuefeng 已提交
621 622 623 624
        return outs[0]
    return outs


625 626 627
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
641
        float32 now.
Y
yaoxuefeng 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
661 662 663
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
664 665 666 667 668 669
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
670 671 672 673 674 675 676 677 678 679 680 681 682
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
683
    if len(outs) == 1:
684 685 686 687
        return outs[0]
    return outs


688 689 690
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
691
    r"""
H
hutuxian 已提交
692 693 694 695 696 697 698
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
699
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
700
            contains the IDs information.
701
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
702
            each embedding vector respectively.
703
        dtype(str): The dtype refers to the data type of output tensor. Only supports
704
        float32 now.
H
hutuxian 已提交
705 706 707 708 709 710 711 712 713 714

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
715
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
716 717 718 719
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
720 721 722
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
723 724 725 726 727 728
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
729 730 731 732 733 734 735 736 737 738 739 740 741
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
742 743 744 745 746
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
747
@templatedoc()
748 749 750 751 752 753 754 755 756 757 758
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
759
    r"""
760 761
    :api_attr: Static Graph

762 763 764 765
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
766 767 768

    The formula is as follows:

Y
yuyang18 已提交
769
    ..  math::
G
guosheng 已提交
770

771
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
772

773
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
774

775
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
776

777 778 779 780 781
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
782

G
guosheng 已提交
783
    Args:
784
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
785 786 787 788 789
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
790
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
791 792 793 794
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
795 796
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
797
            a default :code:`ParamAttr` would be added as scale. The
798 799
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
800 801
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
802
            a default :code:`ParamAttr` would be added as bias. The
803
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
804
        act(str, optional): Activation to be applied to the output of layer normalization.
805 806
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
807 808

    Returns:
809
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
810 811 812

    Examples:

813 814
        .. code-block:: python

815 816
            import paddle
            paddle.enable_static()
817 818 819
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
820
    """
821 822 823
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
824
    helper = LayerHelper('layer_norm', **locals())
825 826 827
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
828 829 830 831 832 833 834
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
835 836 837 838 839 840 841 842 843
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
844
        inputs['Scale'] = scale
845 846
    else:
        if param_attr:
T
tianshuo78520a 已提交
847
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
848
    if shift:
849 850 851 852 853 854
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
855
        inputs['Bias'] = bias
856 857
    else:
        if bias_attr:
T
tianshuo78520a 已提交
858
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
859 860

    # create output
861 862 863 864 865 866
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
867
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
868

869 870 871 872 873 874 875 876 877 878
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
879 880 881 882

    return helper.append_activation(layer_norm_out)


D
dengkaipeng 已提交
883
@templatedoc()
884
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
885
    r"""
886 887
    :api_attr: Static Graph

D
dengkaipeng 已提交
888 889
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
890
    This operation calculates the spectral normalization value of weight parameters of
891
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
892 893
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
894

D
dengkaipeng 已提交
895 896 897
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
898
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
899 900

    Step 2:
T
tianshuo78520a 已提交
901
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
902 903
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
904

905
    .. math::
D
dengkaipeng 已提交
906 907 908 909 910 911

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
912
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
913 914 915 916

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
917

D
dengkaipeng 已提交
918
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
919

920

D
dengkaipeng 已提交
921 922 923
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
924
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
925 926 927
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
928 929 930
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
931 932

    Returns:
C
Chen Long 已提交
933
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
934
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
935 936

    Examples:
K
Kaipeng Deng 已提交
937
       .. code-block:: python
D
dengkaipeng 已提交
938

939
            import paddle
K
Kaipeng Deng 已提交
940

941
            paddle.enable_static()
C
Chen Long 已提交
942
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
943
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
944
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
945 946
    """
    helper = LayerHelper('spectral_norm', **locals())
947 948 949
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
950 951 952
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
953
    dtype = weight.dtype
D
dengkaipeng 已提交
954 955

    # create intput and parameters
956
    input_shape = weight.shape
957
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
958 959 960 961 962
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
963 964 965
    h = input_shape[dim]
    w = np.prod(input_shape) // h

966 967 968 969 970 971
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
972
    u.stop_gradient = True
973 974 975 976 977 978
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
979
    v.stop_gradient = True
D
dengkaipeng 已提交
980

981 982 983 984 985 986 987
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
988
    # create output
989
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
990

991 992 993 994 995 996 997 998 999 1000 1001 1002
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
1003

1004
    return out
D
Dun 已提交
1005 1006


C
caoying03 已提交
1007
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
1008
    """
1009

Y
yangyaming 已提交
1010
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
1011 1012

    Args:
1013 1014 1015
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
1016 1017
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
1018 1019
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
1020
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
1021
            output Tensor. The result tensor will have one fewer dimension
1022 1023 1024 1025
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
1026 1027

    Returns:
1028 1029
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
1030

1031 1032
    Raises:
        TypeError, if out data type is different with the input data type.
1033

G
guosheng 已提交
1034 1035 1036
    Examples:
        .. code-block:: python

1037
            import paddle.fluid as fluid
1038 1039
            import paddle
            paddle.enable_static()
G
guosheng 已提交
1040 1041 1042
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
1043
            # Each example is followed by the corresponding output tensor.
1044
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
1045 1046 1047 1048
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
1049

1050
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
1051 1052
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
1053
            # Each example is followed by the corresponding output tensor.
1054
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
1055 1056
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
1057

G
guosheng 已提交
1058
    """
1059 1060
    reduce_all, dim = _get_reduce_dim(dim, input)

1061
    if in_dygraph_mode():
1062
        return _C_ops.sum(input, dim, None, keep_dim)
1063
    elif _in_legacy_dygraph():
1064 1065 1066
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
1067
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
1068
    check_variable_and_dtype(
1069 1070 1071 1072 1073
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
1074
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
1075
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
1076 1077 1078 1079 1080 1081
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
1082
    return out
G
guosheng 已提交
1083 1084


Y
yuyang18 已提交
1085
@templatedoc()
1086
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
1087
    """
1088 1089
    :api_attr: Static Graph

Y
yuyang18 已提交
1090
    ${comment}
1091 1092

    Args:
Y
yuyang18 已提交
1093
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
1094 1095
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
1096 1097 1098 1099 1100
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
1101
        ${out_comment}.
1102 1103

    Examples:
B
Bai Yifan 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
1116 1117
    """
    helper = LayerHelper('row_conv', **locals())
1118
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
1119
    dtype = helper.input_dtype()
1120
    filter_shape = [future_context_size + 1, input.shape[-1]]
1121 1122 1123
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
1124
    out = helper.create_variable_for_type_inference(dtype)
1125 1126 1127 1128 1129
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
1130
    return helper.append_activation(out)
1131 1132


1133
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
1134
def one_hot(input, depth, allow_out_of_range=False):
1135
    """
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
1174
                        [0., 1., 0., 0.],
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
1187
            The second dimension in X is 5, which is greater than depth.
1188 1189
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
1190 1191

    Args:
1192 1193 1194
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
1195
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
1196
            is word id, depth is generally the dictionary size.
1197
        allow_out_of_range(bool): A bool value indicating whether the input
1198 1199 1200 1201
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
1202 1203

    Returns:
1204
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
1205 1206

    Examples:
C
caoying03 已提交
1207
        .. code-block:: python
1208

1209
            import paddle
1210
            import paddle.fluid as fluid
1211 1212
            paddle.enable_static()

1213 1214 1215
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
1216
    """
J
Jiabin Yang 已提交
1217
    if _non_static_mode():
S
songyouwei 已提交
1218 1219 1220
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
1221 1222
                1,
            ), "depth of type Variable should have shape [1]"
1223
            depth = depth.item(0)
1224 1225 1226
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
1227 1228
        out.stop_gradient = True
        return out
1229

1230
    helper = LayerHelper("one_hot", **locals())
1231
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
1232
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
1233
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
1234

1235 1236
    if not isinstance(depth, Variable):
        # user attribute
1237
        inputs = {'X': input}
Y
Yi Liu 已提交
1238
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
1239
    else:
1240 1241 1242
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
1243 1244 1245
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
1246
    one_hot_out.stop_gradient = True
1247
    return one_hot_out
Y
Yu Yang 已提交
1248 1249


Y
Yu Yang 已提交
1250
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
1251
    """
1252 1253
    :api_attr: Static Graph

1254 1255
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
1256
    and the step size is 1.
Y
Yu Yang 已提交
1257 1258

    Args:
Y
Yibing Liu 已提交
1259 1260 1261
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
1262

1263
    Returns:
Y
Yibing Liu 已提交
1264
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
1265 1266 1267 1268

    Examples:
        .. code-block:: python

1269
           import paddle.fluid as fluid
1270 1271
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
1272
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
1273
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
1274 1275
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
1276 1277
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
1278
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
1279 1280 1281 1282
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
1283 1284
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
1285
    if is_new_var:
1286 1287 1288
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
1289
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
1290 1291
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
1292
            outputs={'Out': [counter]},
1293 1294
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
1295 1296 1297
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
1298 1299


1300
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
1301
    """
1302
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
1303 1304
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
1305

M
minqiyang 已提交
1306
    For example:
H
haowang101779990 已提交
1307 1308 1309

    .. code-block:: text

M
minqiyang 已提交
1310
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
1311
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
1312

Y
Yibing Liu 已提交
1313
    Args:
1314
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
1315
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
1316
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
1317 1318

    Returns:
1319
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
1320 1321 1322 1323

    Examples:
        .. code-block:: python

1324 1325 1326
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
1327

Y
Yibing Liu 已提交
1328
    """
J
Jiabin Yang 已提交
1329
    if _non_static_mode():
L
Leo Chen 已提交
1330 1331 1332
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
1333
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
1334 1335 1336 1337 1338
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
1339
        if _in_legacy_dygraph():
1340
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
1341
            return out
1342
        return _C_ops.unsqueeze(input, axes)
1343 1344

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
1372
        if utils._contain_var(axes):
1373
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
1374 1375 1376
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
1377 1378
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
1379 1380 1381 1382 1383 1384
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
1385

1386 1387
    return out

1388

Y
yangyaming 已提交
1389
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
1390
    """
Y
Yibing Liu 已提交
1391
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
1392 1393 1394 1395
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
1396
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
1397 1398 1399 1400 1401 1402

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
1403
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
1404 1405 1406
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

1407
            target_lod: [4, 2]
Y
yangyaming 已提交
1408 1409

            then we get a 1-level LoDTensor:
1410
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
1411 1412 1413 1414 1415 1416
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
1417
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
1418 1419 1420 1421
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
1422
                y.data = [[2, 4]]
Y
yangyaming 已提交
1423 1424 1425
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
1426
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
1427 1428 1429 1430 1431 1432
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
1433
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
1434 1435 1436 1437
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
1438
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
1439 1440 1441 1442
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
1443
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
1444 1445 1446 1447
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
1448
        x (Variable): Input variable which could be a Tensor or LoDTensor.
1449
                      The data type should be int32, int64, float32 or float64.
1450 1451
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
1452 1453
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
1454
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
1455 1456

    Returns:
Y
Yibing Liu 已提交
1457
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
1458 1459

    Raises:
Y
Yibing Liu 已提交
1460
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
1461 1462 1463 1464

    Examples:
        .. code-block:: python

1465
            import paddle.fluid as fluid
1466 1467 1468
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
1469
    """
1470 1471 1472
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
1473
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
1474
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
1475
    if y is not None:
1476
        check_type(y, 'y', (Variable), 'lod_reset')
1477 1478 1479 1480
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
1481
    elif target_lod is not None:
1482 1483 1484 1485 1486 1487
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
1488
    else:
1489 1490 1491 1492
        raise ValueError("y and target_lod should not be both none.")
    return out


1493
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
1494
    if _non_static_mode():
1495
        op = getattr(_legacy_C_ops, op_name)
1496 1497 1498 1499
        if binary_op:
            return op(x, y)
        else:
            return op(x)
1500
    check_variable_and_dtype(
1501 1502
        x,
        "x",
1503
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
1504 1505
        op_name,
    )
1506
    if y is not None:
1507
        check_variable_and_dtype(
1508 1509
            y,
            "y",
1510
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
1511 1512
            op_name,
        )
1513
    if out is not None:
1514
        check_type(out, "out", Variable, op_name)
1515

M
minqiyang 已提交
1516 1517
    helper = LayerHelper(op_name, **locals())

1518 1519 1520
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
1521 1522
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
1523 1524

    if out is None:
1525
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
1526 1527

    if binary_op:
1528 1529 1530
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
1531 1532 1533 1534 1535 1536
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


1537 1538 1539
@templatedoc()
def clip(x, min, max, name=None):
    """
1540
        :old_api: paddle.fluid.layers.clip
1541

1542 1543 1544 1545
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
1546 1547
        min(float): ${min_comment}
        max(float): ${max_comment}
1548 1549
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
1550
                             For more information, please refer to :ref:`api_guide_Name`
1551 1552

    Returns:
S
SunGaofeng 已提交
1553 1554 1555 1556
        ${out_comment}

    Return Type:
        ${out_type}
1557 1558 1559 1560

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
1561
            import paddle.fluid as fluid
S
SunGaofeng 已提交
1562
            input = fluid.data(
1563 1564
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
1565 1566 1567
    """

    helper = LayerHelper("clip", **locals())
1568
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
1569 1570

    if name is None:
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
1597 1598 1599
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
1600 1601

    Returns:
1602
        Tensor:
W
wangguanzhong 已提交
1603

1604
        out(${out_type}): ${out_comment}
1605

W
wangguanzhong 已提交
1606

1607 1608 1609
    Examples:
        .. code-block:: python

1610
            import paddle
1611
            import paddle.fluid as fluid
1612

1613 1614 1615
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
1616 1617
    """

L
lyq 已提交
1618
    if in_dygraph_mode():
1619
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
1620
    if _non_static_mode():
1621
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
1622

1623
    helper = LayerHelper("clip_by_norm", **locals())
1624
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
1625
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
1626 1627

    if name is None:
1628 1629 1630
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
1631

1632 1633 1634
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
1635

1636 1637 1638 1639 1640 1641
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
1642 1643

    return out
X
Xin Pan 已提交
1644 1645


C
chengduo 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
1657 1658 1659 1660

    Examples:
        .. code-block:: python

1661
            import paddle.fluid as fluid
1662 1663 1664 1665 1666
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
1667
    """
1668 1669 1670
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

1671
    if _non_static_mode():
1672
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
1673 1674 1675

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1676 1677 1678 1679 1680 1681
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
1682 1683 1684
    return out


X
Xin Pan 已提交
1685 1686
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
1687 1688 1689 1690 1691 1692 1693 1694
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
1695 1696

    Args:
L
liu zhengxi 已提交
1697 1698
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
1699 1700 1701
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
1702 1703

    Returns:
L
liu zhengxi 已提交
1704
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
1705 1706

    Examples:
L
liu zhengxi 已提交
1707
        ..  code-block:: python
1708

1709
            import paddle.fluid as fluid
1710 1711
            import paddle
            paddle.enable_static()
1712 1713 1714 1715 1716
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
1717

1718

X
Xin Pan 已提交
1719
    """
J
Jiabin Yang 已提交
1720
    if _non_static_mode():
1721 1722 1723 1724 1725 1726 1727 1728
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
1729

1730 1731
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
1732
    helper = LayerHelper("mul", **locals())
1733 1734
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
1735
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
1736

1737 1738 1739
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
1740 1741 1742
    return out


C
chengduo 已提交
1743 1744 1745
@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
1746 1747 1748 1749 1750 1751 1752 1753 1754
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

1755
        Output is LoDTensor:
1756 1757 1758 1759 1760 1761
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
1762 1763

    Args:
1764 1765 1766
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
1767 1768

    Returns:
1769
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
1770 1771 1772

    Examples:
        .. code-block:: python
1773

B
bdzhuxiaoning 已提交
1774 1775 1776 1777
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
1778 1779
    """

1780 1781 1782 1783 1784
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
1785 1786
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1787 1788 1789 1790 1791 1792
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
1793
    return out