matmul_mkldnn_op.cc 26.7 KB
Newer Older
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16

17
#include <tuple>
18

19
#include "paddle/fluid/framework/convert_utils.h"
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
21 22 23

using dnnl::memory;
using dnnl::primitive;
24 25 26 27
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::platform::GetMKLDNNFormat;
using paddle::platform::MKLDNNDeviceContext;
28
using paddle::platform::MKLDNNFormatForSize;
29 30
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
31
using phi::vectorize;
32 33 34
using Tensor = paddle::framework::Tensor;

namespace {
35

36 37
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
38
static Tensor FoldOuterDims(const Tensor& input) {
39 40 41 42 43 44 45 46 47 48 49 50
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
51 52 53
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext& dev_ctx,
                                   const Tensor* input) {
  auto input_dims = vectorize(input->dims());
54 55 56 57
  if (input_dims.size() != 3) {
    return *input;
  }

58
  Tensor output;
59 60
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

61
  auto output_dims = vectorize(output.dims());
62

63 64
  memory::data_type input_type = paddle::framework::ToMKLDNNDataType(
      paddle::framework::TransToProtoVarType(input->dtype()));
65
  paddle::platform::ReorderMKLDNNHandler reorder_handler(
66 67 68 69
      output_dims,
      paddle::framework::TransToProtoVarType(input->dtype()),
      input_type,
      dev_ctx.GetEngine());
70 71

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
72 73
      memory::format_tag::abc,
      paddle::platform::to_void_cast(input->data<T>()));
74 75 76 77 78
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

79
  auto& astream = MKLDNNDeviceContext::tls().get_stream();
80 81 82 83 84 85 86 87
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
88 89 90 91 92 93 94 95 96 97 98 99 100
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim& x_dim) {
101
  return x_dim.size() > 1 ? x_dim : phi::make_ddim({1, x_dim[0]});
102 103 104 105 106 107
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim& y_dim) {
108
  return y_dim.size() > 1 ? y_dim : phi::make_ddim({y_dim[0], 1});
109 110 111
}

template <typename XT, typename YT, typename OT>
112
class MatMulMKLDNNHandler
113
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
114
 public:
115
  MatMulMKLDNNHandler(const dnnl::engine engine,
116 117 118 119 120 121
                      paddle::platform::Place cpu_place,
                      Tensor* x,
                      bool trans_x,
                      Tensor* y,
                      bool trans_y,
                      Tensor* out,
122
                      float scale)
123 124
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
125 126
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y->dims(), 0, trans_y);
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
        !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

    memory::dims y_strides =
        !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

147 148 149
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, MKLDNNGetDataType<OT>(), out_strides);
150 151 152 153 154

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
155
  }
156
  // Constructor for FWD MatMul
157
  MatMulMKLDNNHandler(const dnnl::engine engine, const ExecutionContext& ctx)
158
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(
159
            engine, ctx.GetPlace()) {
160
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);
161

162
    auto matmul_dims_ = GetMatmulDims(ctx);
163 164 165 166 167 168
    auto x_md = memory::desc(
        matmul_dims_.x_dims, MKLDNNGetDataType<XT>(), matmul_dims_.x_strides);
    auto y_md = memory::desc(
        matmul_dims_.y_dims, MKLDNNGetDataType<YT>(), matmul_dims_.y_strides);
    auto out_md = memory::desc(matmul_dims_.out_dims,
                               MKLDNNGetDataType<OT>(),
169
                               matmul_dims_.out_strides);
170
    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
171
  }
172 173

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
174
    const YT* input_data = input->data<YT>();
175
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
176
                                            to_void_cast<YT>(input_data));
177 178
  }

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
 public:
  void Execute(const paddle::framework::Tensor* x,
               const paddle::framework::Tensor* y,
               paddle::framework::Tensor* out) {
    const auto src_memory_p = this->AcquireSrcMemory(x);
    const auto weights_memory_p = this->AcquireWeightsMemory(y);
    const auto dst_memory_p = this->AcquireDstMemory(out);

    auto matmul_p = this->AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    // Simulate batch matmul by processing in loop
    void* x_ptr = src_memory_p->get_data_handle();
    void* y_ptr = weights_memory_p->get_data_handle();
    void* out_ptr = dst_memory_p->get_data_handle();
    auto offsets = this->GetOffsets();
    for (uint16_t i = 0; i < this->GetBatchSize(); ++i) {
      src_memory_p->set_data_handle(x_ptr);
      weights_memory_p->set_data_handle(y_ptr);
      dst_memory_p->set_data_handle(out_ptr);
205 206 207 208 209 210
      matmul_p->execute(astream,
                        {
                            {DNNL_ARG_SRC, *src_memory_p},
                            {DNNL_ARG_WEIGHTS, *weights_memory_p},
                            {DNNL_ARG_DST, *dst_memory_p},
                        });
211 212 213 214 215
      x_ptr = static_cast<char*>(x_ptr) + std::get<0>(offsets);
      y_ptr = static_cast<char*>(y_ptr) + std::get<1>(offsets);
      out_ptr = static_cast<char*>(out_ptr) + std::get<2>(offsets);
    }
    astream.wait();
216

217 218 219 220
    auto format =
        MKLDNNFormatForSize(out->dims().size(), dnnl::memory::format_tag::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
221 222
  }

223
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
224 225 226 227 228 229 230 231 232 233 234
      paddle::framework::Tensor* output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
235 236 237 238
  }

 private:
  struct MatMulDims {
239 240
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
241 242
  };

243 244 245 246 247 248 249 250 251 252 253
  phi::DDim GetDimForInput(const ExecutionContext& ctx,
                           std::string input_name) {
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    if (!shape.empty() && !axis.empty()) {
      auto it_zero = std::find(shape.begin(), shape.end(), 0);
      if (it_zero != shape.end()) {
        for (uint64_t i = 0; i < shape.size(); i++) {
          if (shape[i] == 0) {
            PADDLE_ENFORCE_LT(
254 255
                i,
                input_dims.size(),
256 257 258
                paddle::platform::errors::InvalidArgument(
                    "The index of 0 in fused_reshape_%s ",
                    "should be less than output dim size, ",
259 260 261 262
                    "but the index is %d and output dim size is %d",
                    input_name,
                    i,
                    input_dims.size()));
263 264 265 266 267 268 269 270 271 272
            shape[i] = input_dims.at(i);
          }
        }
      }

      return input_dims.reshape(shape).transpose(axis);
    }
    return input_dims;
  }

273
  std::pair<phi::funcs::MatDescriptor, memory::dims> GetInputDimsAndStrides(
274
      const ExecutionContext& ctx, std::string input_name) {
275 276 277 278 279
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
280 281 282 283 284
      auto it_zero = std::find(shape.begin(), shape.end(), 0);
      if (it_zero != shape.end()) {
        for (uint64_t i = 0; i < shape.size(); i++) {
          if (shape[i] == 0) {
            PADDLE_ENFORCE_LT(
285 286
                i,
                input_dims.size(),
287 288 289
                paddle::platform::errors::InvalidArgument(
                    "The index of 0 in fused_reshape_%s ",
                    "should be less than output dim size, ",
290 291 292 293
                    "but the index is %d and output dim size is %d",
                    input_name,
                    i,
                    input_dims.size()));
294 295 296 297 298
            shape[i] = input_dims.at(i);
          }
        }
      }

299 300 301 302 303
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
304
    phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
305 306
        MatrixDimsFromVector(new_dims),
        0,
307
        ctx.Attr<bool>("transpose_" + input_name));
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

327 328 329 330 331 332 333 334 335
  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

336 337 338 339 340
  bool IsInputFused(const ExecutionContext& ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

341 342 343 344 345 346 347
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

348
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
349
    phi::funcs::MatDescriptor mat_dim_x;
350 351
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
352
    phi::funcs::MatDescriptor mat_dim_y;
353 354
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");
355

356 357
    auto x_bs = mat_dim_x.batch_size_;
    auto y_bs = mat_dim_y.batch_size_;
358 359
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs,
                      false,
360
                      paddle::platform::errors::InvalidArgument(
361 362 363
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

364
    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
365 366 367
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
368 369

    batch_size_ = 1;
370
    if (out_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
371 372
      auto x_dims = GetDimForInput(ctx, "X");
      auto y_dims = GetDimForInput(ctx, "Y");
373
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
374 375 376
      x_bs /= batch_size_;
      y_bs /= batch_size_;
      out_bs /= batch_size_;
377
    }
378 379 380
    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};
381

382 383 384
    x_offset_ = x_bs * M * K * sizeof(XT);
    y_offset_ = y_bs * K * N * sizeof(YT);
    out_offset_ = out_bs * M * N * sizeof(OT);
385 386

    // Translate transA and transB
387 388 389 390 391 392
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
393 394
    memory::dims out_strides = memory::dims{M * N, N, 1};

395
    CorrectStridesWhenFloatOutputFused(ctx, N, out_bs, &out_strides);
396 397

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
398 399
  }

400 401 402 403
  std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                 const std::vector<int>& axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();
404

405
    auto axis_set = std::set<int>(axis.begin(), axis.end());
406 407
    PADDLE_ENFORCE_EQ(axis_set.size(),
                      axis_size,
408 409
                      paddle::platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));
410

411 412
    PADDLE_ENFORCE_EQ(in_rank,
                      axis_size,
413 414 415 416 417
                      paddle::platform::errors::InvalidArgument(
                          "The input dimension's size "
                          "should be equal to the axis's size. "
                          "But received dimension is %d, "
                          "axis's size is %d",
418 419
                          in_rank,
                          axis_size));
420

421 422
    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()),
                      axis_size,
423 424
                      paddle::platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));
425

426 427 428 429 430
    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
431 432
  }

433
  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
434 435
                                          const memory::dim N,
                                          memory::dim b,
436 437 438
                                          memory::dims* out_strides) const {
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
439
    }
440 441
  }

442
  uint16_t GetBatchSize(void) const { return batch_size_; }
443

444 445
  std::tuple<uint32_t, uint32_t, uint32_t> GetOffsets() const {
    return std::make_tuple(x_offset_, y_offset_, out_offset_);
446 447
  }

448 449 450 451 452 453 454 455 456
  dnnl::primitive_attr CreateMatmulAttrs(const ExecutionContext& ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
    }

457 458
    paddle::platform::AppendActivation(ctx, post_operations);

459 460 461 462
    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
  }

463
 private:
464 465 466 467
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
468 469
};

470 471 472 473 474 475 476
/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
477
    Tensor* x, const phi::funcs::MatDescriptor& descriptor) {
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
505 506
static void ReshapeXYOutToMatrixSequence(
    Tensor* x, Tensor* y, Tensor* out, bool trans_x, bool trans_y) {
507 508
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
509 510
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
511 512 513 514
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
515 516
                 mat_dim_x.height_,
                 mat_dim_y.width_});
517 518
  }

519 520
  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
521 522
}

523
// Choose appropriate Handler instances based on inferred
524 525 526 527
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
528
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
529 530
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
531 532 533 534 535
  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Output<Tensor>("Out");
  const auto& dev_ctx =
      ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
536
  const auto& onednn_engine = dev_ctx.GetEngine();
537

538
  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
539
    MatMulMKLDNNHandler<XT, YT, float>(onednn_engine, ctx).Execute(x, y, out);
540
  } else if (is_bfloat16) {
541
    MatMulMKLDNNHandler<XT, YT, paddle::platform::bfloat16>(onednn_engine, ctx)
542
        .Execute(x, y, out);
543
  } else if (fuse_relu) {
544
    MatMulMKLDNNHandler<XT, YT, uint8_t>(onednn_engine, ctx).Execute(x, y, out);
545
  } else {
546
    MatMulMKLDNNHandler<XT, YT, int8_t>(onednn_engine, ctx).Execute(x, y, out);
547 548 549 550
  }
}

template <typename T>
551
class MatMulMKLDNNKernel : public paddle::framework::OpKernel<T> {
552
 public:
553
  void Compute(const ExecutionContext& ctx) const override {
554
    if (ctx.HasAttr("head_number")) {
555
      PADDLE_ENFORCE_EQ(
556 557
          ctx.Attr<int>("head_number"),
          1,
558
          paddle::platform::errors::Unimplemented(
559
              "oneDNN matmul doesn't support multiple heads. Expected "
560 561
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
562 563 564 565
    }
    ExecuteMatMul<T, T>(ctx);
  }
};
566

567 568 569 570 571
}  // anonymous namespace

namespace paddle {
namespace operators {

572
template <typename T>
573 574 575
void MatMulGradMKLDNNKernel<T>::Compute(const ExecutionContext& ctx) const {
  if (ctx.HasAttr("head_number")) {
    PADDLE_ENFORCE_EQ(
576 577
        ctx.Attr<int>("head_number"),
        1,
578
        platform::errors::Unimplemented(
579
            "oneDNN matmul doesn't support multiple heads. Expected "
580 581
            "head_number=1. But received `head_number` is %d",
            ctx.Attr<int>("head_number")));
582
  }
583 584
  RunKernel(ctx);
}
585

586 587
template <typename T>
void MatMulGradMKLDNNKernel<T>::ExecuteMatMulGrad(
588 589 590 591 592 593 594 595 596
    const ExecutionContext& ctx,
    const MKLDNNDeviceContext& dev_ctx,
    const dnnl::engine& engine,
    Tensor* x,
    bool trans_x,
    bool is_fold_init_dims_x,
    Tensor* y,
    bool trans_y,
    bool is_fold_init_dims_y,
597
    Tensor* out) const {
598 599 600 601 602 603 604 605 606 607 608 609 610 611
  // gradient is calculated in a different way when broadcasting is used
  bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                      out->dims().size() == 2;

  Tensor x_combined, y_combined;
  if (!need_combine) {
    x_combined = *x;
    y_combined = *y;
  } else {
    x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                     : FoldFirstAndLastDims<T>(dev_ctx, x);
    y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                     : FoldFirstAndLastDims<T>(dev_ctx, y);
  }
612

613
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
614

615 616 617 618 619 620 621
  MatMulMKLDNNHandler<T, T, T> handler(engine,
                                       ctx.GetPlace(),
                                       &x_combined,
                                       trans_x,
                                       &y_combined,
                                       trans_y,
                                       out,
622
                                       alpha);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

  const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

  out->set_layout(framework::DataLayout::kMKLDNN);
  out->set_format(platform::GetMKLDNNFormat(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims()))));
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::RunKernel(const ExecutionContext& ctx) const {
  const auto& dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto& onednn_engine = dev_ctx.GetEngine();

  auto x = *ctx.Input<Tensor>("X");
  auto y = *ctx.Input<Tensor>("Y");
  auto dout = *ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

  bool transpose_x = ctx.HasAttr("transpose_X") ? ctx.Attr<bool>("transpose_X")
                                                : ctx.Attr<bool>("trans_x");
  bool transpose_y = ctx.HasAttr("transpose_Y") ? ctx.Attr<bool>("transpose_Y")
                                                : ctx.Attr<bool>("trans_y");

  ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

  framework::DDim dx_dims;
  if (dx) {
    dx_dims = dx->dims();
    if (dx_dims != x.dims()) {
      dx->Resize(x.dims());
668
    }
669
  }
670

671 672 673 674 675
  framework::DDim dy_dims;
  if (dy) {
    dy_dims = dy->dims();
    if (dy_dims != y.dims()) {
      dy->Resize(y.dims());
676
    }
677
  }
678

679
  if (transpose_x && transpose_y) {
680 681 682 683
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &y, true, true, &dout, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, true, true, &x, true, false, dy);
684
  } else if (transpose_x) {
685 686 687 688
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &y, false, false, &dout, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &x, false, false, &dout, false, true, dy);
689
  } else if (transpose_y) {
690 691 692 693
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, false, false, &y, false, true, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, true, true, &x, false, true, dy);
694
  } else {
695 696 697 698
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, false, false, &y, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &x, true, true, &dout, false, true, dy);
699 700 701 702 703 704
  }

  if (dx) {
    if (dx_dims != x.dims()) {
      dx->Resize(dx_dims);
      dx->set_format(x.format());
705
    }
706 707 708 709 710
  }
  if (dy) {
    if (dy_dims != y.dims()) {
      dy->Resize(dy_dims);
      dy->set_format(y.format());
711 712
    }
  }
713 714 715 716
}

template class MatMulGradMKLDNNKernel<float>;
template class MatMulGradMKLDNNKernel<paddle::platform::bfloat16>;
717

718 719 720 721
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

722 723 724
REGISTER_OP_KERNEL(matmul,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
725 726
                   MatMulMKLDNNKernel<float>,
                   MatMulMKLDNNKernel<paddle::platform::bfloat16>,
727 728
                   MatMulMKLDNNKernel<int8_t>,
                   MatMulMKLDNNKernel<uint8_t>);
729

730 731 732
REGISTER_OP_KERNEL(matmul_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
733 734
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);