matmul_mkldnn_op.cc 25.6 KB
Newer Older
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16
#include <tuple>
17
#include "paddle/fluid/framework/convert_utils.h"
18 19 20

using dnnl::memory;
using dnnl::primitive;
21 22
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
23
using phi::vectorize;
24
using paddle::platform::GetMKLDNNFormat;
25
using paddle::platform::MKLDNNFormatForSize;
26 27 28 29 30 31
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
using Tensor = paddle::framework::Tensor;

namespace {
32

33 34
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
35
static Tensor FoldOuterDims(const Tensor& input) {
36 37 38 39 40 41 42 43 44 45 46 47
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
48 49 50
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext& dev_ctx,
                                   const Tensor* input) {
  auto input_dims = vectorize(input->dims());
51 52 53 54
  if (input_dims.size() != 3) {
    return *input;
  }

55
  Tensor output;
56 57
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

58
  auto output_dims = vectorize(output.dims());
59

60 61
  memory::data_type input_type = paddle::framework::ToMKLDNNDataType(
      paddle::framework::TransToProtoVarType(input->dtype()));
62
  paddle::platform::ReorderMKLDNNHandler reorder_handler(
63 64
      output_dims, paddle::framework::TransToProtoVarType(input->dtype()),
      input_type, dev_ctx.GetEngine());
65 66

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
67 68
      memory::format_tag::abc,
      paddle::platform::to_void_cast(input->data<T>()));
69 70 71 72 73
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

74
  auto& astream = MKLDNNDeviceContext::tls().get_stream();
75 76 77 78 79 80 81 82
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
83 84 85 86 87 88 89 90 91 92 93 94 95
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim& x_dim) {
96
  return x_dim.size() > 1 ? x_dim : phi::make_ddim({1, x_dim[0]});
97 98 99 100 101 102
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim& y_dim) {
103
  return y_dim.size() > 1 ? y_dim : phi::make_ddim({y_dim[0], 1});
104 105 106
}

template <typename XT, typename YT, typename OT>
107
class MatMulMKLDNNHandler
108
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
109
 public:
110
  MatMulMKLDNNHandler(const dnnl::engine engine,
111 112
                      paddle::platform::Place cpu_place, Tensor* x,
                      bool trans_x, Tensor* y, bool trans_y, Tensor* out,
113
                      float scale)
114 115
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
116 117
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y->dims(), 0, trans_y);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
        !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

    memory::dims y_strides =
        !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

138 139 140
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, MKLDNNGetDataType<OT>(), out_strides);
141 142 143 144 145

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
146
  }
147
  // Constructor for FWD MatMul
148
  MatMulMKLDNNHandler(const dnnl::engine engine, const ExecutionContext& ctx,
149 150
                      float scale)
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(
151
            engine, ctx.GetPlace()) {
152 153 154 155 156 157 158
    dnnl::primitive_attr attr;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      constexpr unsigned tensor_wide_scale = 0;
      attr.set_output_scales(tensor_wide_scale, {scale_out});
    }

159
    auto matmul_dims_ = GetMatmulDims(ctx);
160 161 162 163 164 165 166 167
    auto x_md = memory::desc(matmul_dims_.x_dims, MKLDNNGetDataType<XT>(),
                             matmul_dims_.x_strides);
    auto y_md = memory::desc(matmul_dims_.y_dims, MKLDNNGetDataType<YT>(),
                             matmul_dims_.y_strides);
    auto out_md = memory::desc(matmul_dims_.out_dims, MKLDNNGetDataType<OT>(),
                               matmul_dims_.out_strides);
    this->AcquireForwardPrimitiveDescriptor(attr, x_md, y_md, out_md);
  }
168 169

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
170
    const YT* input_data = input->data<YT>();
171
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
172
                                            to_void_cast<YT>(input_data));
173 174
  }

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
 public:
  void Execute(const paddle::framework::Tensor* x,
               const paddle::framework::Tensor* y,
               paddle::framework::Tensor* out) {
    const auto src_memory_p = this->AcquireSrcMemory(x);
    const auto weights_memory_p = this->AcquireWeightsMemory(y);
    const auto dst_memory_p = this->AcquireDstMemory(out);

    auto matmul_p = this->AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    // Simulate batch matmul by processing in loop
    void* x_ptr = src_memory_p->get_data_handle();
    void* y_ptr = weights_memory_p->get_data_handle();
    void* out_ptr = dst_memory_p->get_data_handle();
    auto offsets = this->GetOffsets();
    for (uint16_t i = 0; i < this->GetBatchSize(); ++i) {
      src_memory_p->set_data_handle(x_ptr);
      weights_memory_p->set_data_handle(y_ptr);
      dst_memory_p->set_data_handle(out_ptr);
      matmul_p->execute(astream, {
202 203 204
                                     {DNNL_ARG_SRC, *src_memory_p},
                                     {DNNL_ARG_WEIGHTS, *weights_memory_p},
                                     {DNNL_ARG_DST, *dst_memory_p},
205 206 207 208 209 210
                                 });
      x_ptr = static_cast<char*>(x_ptr) + std::get<0>(offsets);
      y_ptr = static_cast<char*>(y_ptr) + std::get<1>(offsets);
      out_ptr = static_cast<char*>(out_ptr) + std::get<2>(offsets);
    }
    astream.wait();
211

212 213 214 215
    auto format =
        MKLDNNFormatForSize(out->dims().size(), dnnl::memory::format_tag::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
216 217
  }

218
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
219 220 221 222 223 224 225 226 227 228 229
      paddle::framework::Tensor* output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
230 231 232 233
  }

 private:
  struct MatMulDims {
234 235
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
236 237
  };

238
  std::pair<phi::funcs::MatDescriptor, memory::dims> GetInputDimsAndStrides(
239
      const ExecutionContext& ctx, std::string input_name) {
240 241 242 243 244
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
      auto it_zero = std::find(shape.begin(), shape.end(), 0);
      if (it_zero != shape.end()) {
        for (uint64_t i = 0; i < shape.size(); i++) {
          if (shape[i] == 0) {
            PADDLE_ENFORCE_LT(
                i, input_dims.size(),
                paddle::platform::errors::InvalidArgument(
                    "The index of 0 in fused_reshape_%s ",
                    "should be less than output dim size, ",
                    "but the index is %d and output dim size is %d", input_name,
                    i, input_dims.size()));
            shape[i] = input_dims.at(i);
          }
        }
      }

      // if "-1" is present then one of reshape dims must be infered
      auto it_negative = std::find(shape.begin(), shape.end(), -1);
      if (it_negative != shape.end()) {
        int64_t dim_product = 1;
        for (int i = 0; i < input_dims.size(); i++) {
          dim_product *= input_dims.at(i);
        }

        int64_t shape_product = std::accumulate(shape.begin(), shape.end(), -1,
                                                std::multiplies<int>());
        int index = std::distance(shape.begin(), it_negative);
        shape[index] = dim_product / shape_product;
      }

275 276 277 278 279
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
280
    phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
281 282
        MatrixDimsFromVector(new_dims), 0,
        ctx.Attr<bool>("transpose_" + input_name));
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

302 303 304 305 306 307 308 309 310
  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

311 312 313 314 315
  bool IsInputFused(const ExecutionContext& ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

316 317 318 319 320 321 322
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

323
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
324
    phi::funcs::MatDescriptor mat_dim_x;
325 326
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
327
    phi::funcs::MatDescriptor mat_dim_y;
328 329
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");
330

331 332
    auto x_bs = mat_dim_x.batch_size_;
    auto y_bs = mat_dim_y.batch_size_;
333
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs, false,
334
                      paddle::platform::errors::InvalidArgument(
335 336 337
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

338
    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
339 340 341
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
342 343

    batch_size_ = 1;
344
    if (out_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
345 346 347
      auto& x_dims = ctx.Input<Tensor>("X")->dims();
      auto& y_dims = ctx.Input<Tensor>("Y")->dims();
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
348 349 350
      x_bs /= batch_size_;
      y_bs /= batch_size_;
      out_bs /= batch_size_;
351
    }
352 353 354
    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};
355

356 357 358
    x_offset_ = x_bs * M * K * sizeof(XT);
    y_offset_ = y_bs * K * N * sizeof(YT);
    out_offset_ = out_bs * M * N * sizeof(OT);
359 360

    // Translate transA and transB
361 362 363 364 365 366
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
367 368
    memory::dims out_strides = memory::dims{M * N, N, 1};

369
    CorrectStridesWhenFloatOutputFused(ctx, N, out_bs, &out_strides);
370 371

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
372 373
  }

374 375 376 377
  std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                 const std::vector<int>& axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();
378

379 380 381 382
    auto axis_set = std::set<int>(axis.begin(), axis.end());
    PADDLE_ENFORCE_EQ(axis_set.size(), axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));
383

384 385 386 387 388 389 390
    PADDLE_ENFORCE_EQ(in_rank, axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "The input dimension's size "
                          "should be equal to the axis's size. "
                          "But received dimension is %d, "
                          "axis's size is %d",
                          in_rank, axis_size));
391

392 393 394
    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()), axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));
395

396 397 398 399 400
    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
401 402
  }

403 404 405 406 407
  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
                                          const memory::dim N, memory::dim b,
                                          memory::dims* out_strides) const {
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
408
    }
409 410
  }

411
  uint16_t GetBatchSize(void) const { return batch_size_; }
412

413 414
  std::tuple<uint32_t, uint32_t, uint32_t> GetOffsets() const {
    return std::make_tuple(x_offset_, y_offset_, out_offset_);
415 416 417
  }

 private:
418 419 420 421
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
422 423
};

424 425 426 427 428 429 430
/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
431
    Tensor* x, const phi::funcs::MatDescriptor& descriptor) {
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutToMatrixSequence(Tensor* x, Tensor* y, Tensor* out,
                                         bool trans_x, bool trans_y) {
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
463 464
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
465 466 467 468 469
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
470 471
  }

472 473
  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
474 475
}

476
// Choose appropriate Handler instances based on inferred
477 478 479 480
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
481
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
482 483
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
484 485 486 487 488 489 490
  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Output<Tensor>("Out");
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
  const auto& dev_ctx =
      ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();

491
  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
492 493
    MatMulMKLDNNHandler<XT, YT, float>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
494
  } else if (is_bfloat16) {
495 496 497
    MatMulMKLDNNHandler<XT, YT, paddle::platform::bfloat16>(dev_ctx.GetEngine(),
                                                            ctx, alpha)
        .Execute(x, y, out);
498
  } else if (fuse_relu) {
499 500
    MatMulMKLDNNHandler<XT, YT, uint8_t>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
501
  } else {
502 503
    MatMulMKLDNNHandler<XT, YT, int8_t>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
504 505 506 507
  }
}

template <typename T>
508
class MatMulMKLDNNKernel : public paddle::framework::OpKernel<T> {
509
 public:
510
  void Compute(const ExecutionContext& ctx) const override {
511
    if (ctx.HasAttr("head_number")) {
512 513
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"), 1,
514
          paddle::platform::errors::Unimplemented(
515
              "oneDNN matmul doesn't support multiple heads. Expected "
516 517
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
518 519 520 521
    }
    ExecuteMatMul<T, T>(ctx);
  }
};
522

523 524 525 526 527
}  // anonymous namespace

namespace paddle {
namespace operators {

528
template <typename T>
529 530 531 532 533
void MatMulGradMKLDNNKernel<T>::Compute(const ExecutionContext& ctx) const {
  if (ctx.HasAttr("head_number")) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<int>("head_number"), 1,
        platform::errors::Unimplemented(
534
            "oneDNN matmul doesn't support multiple heads. Expected "
535 536
            "head_number=1. But received `head_number` is %d",
            ctx.Attr<int>("head_number")));
537
  }
538 539
  RunKernel(ctx);
}
540

541 542 543
template <typename T>
void MatMulGradMKLDNNKernel<T>::ExecuteMatMulGrad(
    const ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx,
544
    const dnnl::engine& engine, Tensor* x, bool trans_x,
545
    bool is_fold_init_dims_x, Tensor* y, bool trans_y, bool is_fold_init_dims_y,
546
    Tensor* out) const {
547 548 549 550 551 552 553 554 555 556 557 558 559 560
  // gradient is calculated in a different way when broadcasting is used
  bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                      out->dims().size() == 2;

  Tensor x_combined, y_combined;
  if (!need_combine) {
    x_combined = *x;
    y_combined = *y;
  } else {
    x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                     : FoldFirstAndLastDims<T>(dev_ctx, x);
    y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                     : FoldFirstAndLastDims<T>(dev_ctx, y);
  }
561

562
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
563

564 565 566
  MatMulMKLDNNHandler<T, T, T> handler(engine, ctx.GetPlace(), &x_combined,
                                       trans_x, &y_combined, trans_y, out,
                                       alpha);
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

  const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

  out->set_layout(framework::DataLayout::kMKLDNN);
  out->set_format(platform::GetMKLDNNFormat(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims()))));
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::RunKernel(const ExecutionContext& ctx) const {
  const auto& dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto& onednn_engine = dev_ctx.GetEngine();

  auto x = *ctx.Input<Tensor>("X");
  auto y = *ctx.Input<Tensor>("Y");
  auto dout = *ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

  bool transpose_x = ctx.HasAttr("transpose_X") ? ctx.Attr<bool>("transpose_X")
                                                : ctx.Attr<bool>("trans_x");
  bool transpose_y = ctx.HasAttr("transpose_Y") ? ctx.Attr<bool>("transpose_Y")
                                                : ctx.Attr<bool>("trans_y");

  ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

  framework::DDim dx_dims;
  if (dx) {
    dx_dims = dx->dims();
    if (dx_dims != x.dims()) {
      dx->Resize(x.dims());
612
    }
613
  }
614

615 616 617 618 619
  framework::DDim dy_dims;
  if (dy) {
    dy_dims = dy->dims();
    if (dy_dims != y.dims()) {
      dy->Resize(y.dims());
620
    }
621
  }
622

623 624
  if (transpose_x && transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, true, true, &dout,
625
                            true, false, dx);
626
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
627
                            true, false, dy);
628 629
  } else if (transpose_x) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, false, false,
630
                            &dout, true, false, dx);
631
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, false, false,
632
                            &dout, false, true, dy);
633 634
  } else if (transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
635
                            &y, false, true, dx);
636
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
637
                            false, true, dy);
638 639
  } else {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
640
                            &y, true, false, dx);
641
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, true, true, &dout,
642
                            false, true, dy);
643 644 645 646 647 648
  }

  if (dx) {
    if (dx_dims != x.dims()) {
      dx->Resize(dx_dims);
      dx->set_format(x.format());
649
    }
650 651 652 653 654
  }
  if (dy) {
    if (dy_dims != y.dims()) {
      dy->Resize(dy_dims);
      dy->set_format(y.format());
655 656
    }
  }
657 658 659 660
}

template class MatMulGradMKLDNNKernel<float>;
template class MatMulGradMKLDNNKernel<paddle::platform::bfloat16>;
661

662 663 664 665 666
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul, MKLDNN, ::paddle::platform::CPUPlace,
667 668 669
                   MatMulMKLDNNKernel<float>,
                   MatMulMKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulMKLDNNKernel<int8_t>, MatMulMKLDNNKernel<uint8_t>);
670 671 672 673

REGISTER_OP_KERNEL(matmul_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);