matmul_mkldnn_op.cc 25.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/blas.h"
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19

W
wanghuancoder 已提交
20 21 22 23 24 25 26
namespace paddle {
namespace platform {
class MKLDNNDeviceContext;
struct CPUPlace;
}  // namespace platform
}  // namespace paddle

27 28 29 30 31 32
namespace paddle {
namespace operators {

using dnnl::memory;
using dnnl::primitive;
using framework::DataLayout;
33
using framework::ExecutionContext;
34 35
using platform::GetMKLDNNFormat;
using platform::MKLDNNDeviceContext;
36 37
using platform::MKLDNNGetDataType;
using platform::to_void_cast;
38 39
using Tensor = framework::Tensor;

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static framework::Tensor FoldOuterDims(const Tensor& input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
static framework::Tensor FoldFirstAndLastDims(
    const MKLDNNDeviceContext& dev_ctx, const Tensor* input) {
  auto input_dims = framework::vectorize(input->dims());
  if (input_dims.size() != 3) {
    return *input;
  }

  framework::Tensor output;
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

  auto output_dims = framework::vectorize(output.dims());

  memory::data_type input_type = framework::ToMKLDNNDataType(input->type());
  std::string key = platform::CreateKey(dev_ctx, input_dims, input->format(),
                                        input->format(), input_type);
  platform::ReorderMKLDNNHandler reorder_handler(output_dims, input->type(),
                                                 input_type, dev_ctx,
                                                 dev_ctx.GetEngine(), key);

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
      memory::format_tag::abc, platform::to_void_cast(input->data<T>()));
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

  platform::RecordEvent record_reorder("int_reorder",
                                       platform::EventRole::kUniqueOp);

  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
class MatMulMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::matmul> {
 public:
  MatMulMKLDNNHandler(const MKLDNNDeviceContext& dev_ctx,
                      const mkldnn::engine engine, platform::Place cpu_place,
                      Tensor* x, bool trans_x, Tensor* y, bool trans_y,
                      Tensor* out, float scale, const std::string& uniq_name)
      : platform::MKLDNNHandlerT<T, dnnl::matmul>(
            dev_ctx, engine, cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(x->dims()),
                                uniq_name)) {
    if (!this->isCached()) {
      auto mat_dim_x = math::CreateMatrixDescriptor(x->dims(), 0, trans_x);
      auto mat_dim_y = math::CreateMatrixDescriptor(y->dims(), 0, trans_y);

      memory::dim x_bs = mat_dim_x.batch_size_;
      memory::dim y_bs = mat_dim_y.batch_size_;

      memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
      const memory::dim M = mat_dim_x.height_;
      const memory::dim N = mat_dim_y.width_;
      const memory::dim K = mat_dim_x.width_;

      memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
      memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
      memory::dims out_dims = {out_bs, M, N};

      memory::dims x_strides =
          !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

      memory::dims y_strides =
          !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
      memory::dims out_strides = memory::dims{M * N, N, 1};

      auto x_md = memory::desc(x_dims, MKLDNNGetDataType<T>(), x_strides);
      auto y_md = memory::desc(y_dims, MKLDNNGetDataType<T>(), y_strides);
      auto out_md = memory::desc(out_dims, MKLDNNGetDataType<T>(), out_strides);

      dnnl::primitive_attr attrs;
      if (scale != 1.0f) attrs.set_output_scales(0, {scale});

      this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
    }
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
                                            to_void_cast<T>(input_data),
                                            "@weights_mem_p");
  }
};

145 146 147 148 149
template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

150 151
template <typename T>
constexpr bool IsBfloat16() {
152
  return std::is_same<T, platform::bfloat16>::value;
153 154
}

155 156 157 158 159 160 161 162 163 164 165 166 167
// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static framework::DDim RowMatrixDimsFromVector(const framework::DDim& x_dim) {
  return x_dim.size() > 1 ? x_dim : framework::make_ddim({1, x_dim[0]});
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static framework::DDim ColumnMatrixDimsFromVector(
    const framework::DDim& y_dim) {
  return y_dim.size() > 1 ? y_dim : framework::make_ddim({y_dim[0], 1});
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
    framework::Tensor* x, const math::MatDescriptor& descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutToMatrixSequence(framework::Tensor* x,
                                         framework::Tensor* y,
                                         framework::Tensor* out, bool trans_x,
                                         bool trans_y) {
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
  auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
  }

  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
template <typename XT, typename YT, typename OT>
class MatMulFactory {
 public:
  void CreateAndExecute(const ExecutionContext& ctx) {
    SetDNNLEngine(ctx);
    if (IsInitialized()) {
      UpdateDataPointers(ctx);
      Execute();
      SetOutputFormat(ctx);
      return;
    }
    CreateMemories(ctx);
    CreatePrimitive(ctx);
    Execute();
    SetOutputFormat(ctx);
    SetInitialized();
  }

 private:
  struct MatMulDims {
242 243
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  };

  void SetDNNLEngine(const ExecutionContext& ctx) {
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    engine_ = dev_ctx.GetEngine();
  }

  template <typename T>
  dnnl::memory CreateMemory(const memory::dims& dims,
                            const memory::dims& strides, const T* data) {
    auto md = memory::desc(dims, MKLDNNGetDataType<T>(), strides);
    return dnnl::memory(md, engine_, to_void_cast(data));
  }

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
  std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                 const std::vector<int>& axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();

    auto axis_set = std::set<int>(axis.begin(), axis.end());
    PADDLE_ENFORCE_EQ(axis_set.size(), axis_size,
                      platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));

    PADDLE_ENFORCE_EQ(
        in_rank, axis_size,
        platform::errors::InvalidArgument("The input dimension's size "
                                          "should be equal to the axis's size. "
                                          "But received dimension is %d, "
                                          "axis's size is %d",
                                          in_rank, axis_size));

    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()), axis_size,
                      platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));

    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
  }

  std::pair<math::MatDescriptor, memory::dims> GetInputDimsAndStrides(
      const ExecutionContext& ctx, std::string input_name) {
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
    math::MatDescriptor mat_dim =
        math::CreateMatrixDescriptor(MatrixDimsFromVector(new_dims), 0,
                                     ctx.Attr<bool>("transpose_" + input_name));

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

  bool IsInputFused(const ExecutionContext& ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

327 328 329 330 331 332 333 334 335 336
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
                                          const memory::dim N, memory::dim b,
                                          memory::dims* out_strides) const {
337 338 339
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
    }
340 341
  }

342
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
343 344 345 346 347 348
    math::MatDescriptor mat_dim_x;
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
    math::MatDescriptor mat_dim_y;
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");
349

350 351
    auto x_bs = mat_dim_x.batch_size_;
    auto y_bs = mat_dim_y.batch_size_;
352 353 354 355 356
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs, false,
                      platform::errors::InvalidArgument(
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

357
    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
358 359 360
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
361 362

    batch_size_ = 1;
363
    if (out_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
364 365 366
      auto& x_dims = ctx.Input<Tensor>("X")->dims();
      auto& y_dims = ctx.Input<Tensor>("Y")->dims();
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
367 368 369
      x_bs /= batch_size_;
      y_bs /= batch_size_;
      out_bs /= batch_size_;
370
    }
371 372 373
    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};
374

375 376 377
    x_offset_ = x_bs * M * K * sizeof(XT);
    y_offset_ = y_bs * K * N * sizeof(YT);
    out_offset_ = out_bs * M * N * sizeof(OT);
378 379

    // Translate transA and transB
380 381 382 383 384 385
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
386 387
    memory::dims out_strides = memory::dims{M * N, N, 1};

388
    CorrectStridesWhenFloatOutputFused(ctx, N, out_bs, &out_strides);
389 390

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
391 392 393 394 395
  }

  void CreateMemories(const ExecutionContext& ctx) {
    auto matmul_dims = GetMatmulDims(ctx);

396 397 398 399
    x_mem_ = CreateMemory<XT>(matmul_dims.x_dims, matmul_dims.x_strides,
                              ctx.Input<Tensor>("X")->data<XT>());
    y_mem_ = CreateMemory<YT>(matmul_dims.y_dims, matmul_dims.y_strides,
                              ctx.Input<Tensor>("Y")->data<YT>());
400
    out_mem_ = CreateMemory<OT>(
401
        matmul_dims.out_dims, matmul_dims.out_strides,
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        ctx.Output<Tensor>("Out")->mutable_data<OT>(ctx.GetPlace()));
  }

  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

  void CreatePrimitive(const ExecutionContext& ctx) {
    dnnl::primitive_attr attr;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      constexpr unsigned tensor_wide_scale = 0;
      attr.set_output_scales(tensor_wide_scale, {scale_out});
    }

    auto matmul_d = dnnl::matmul::desc(x_mem_.get_desc(), y_mem_.get_desc(),
                                       out_mem_.get_desc());
    auto matmul_pd = dnnl::matmul::primitive_desc(matmul_d, attr, engine_);
    matmul_prim_ = dnnl::matmul(matmul_pd);
  }

  void Execute() {
    dnnl::stream stream(engine_);
430 431 432 433

    void* x_ptr = x_mem_.get_data_handle();
    void* y_ptr = y_mem_.get_data_handle();
    void* out_ptr = out_mem_.get_data_handle();
434
    for (uint16_t i = 0; i < batch_size_; i++) {
435 436 437 438 439 440 441 442
      x_mem_.set_data_handle(x_ptr);
      y_mem_.set_data_handle(y_ptr);
      out_mem_.set_data_handle(out_ptr);
      matmul_prim_.execute(stream, {
                                       {MKLDNN_ARG_SRC, x_mem_},
                                       {MKLDNN_ARG_WEIGHTS, y_mem_},
                                       {MKLDNN_ARG_DST, out_mem_},
                                   });
443 444 445
      x_ptr = static_cast<char*>(x_ptr) + x_offset_;
      y_ptr = static_cast<char*>(y_ptr) + y_offset_;
      out_ptr = static_cast<char*>(out_ptr) + out_offset_;
446
    }
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
    stream.wait();
  }

  void SetOutputFormat(const ExecutionContext& ctx) {
    using platform::MKLDNNFormatForSize;
    auto* out = ctx.Output<Tensor>("Out");
    auto format =
        MKLDNNFormatForSize(out->dims().size(), MKLDNNMemoryFormat::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
  }

  void UpdateDataPointers(const ExecutionContext& ctx) {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    x_mem_.set_data_handle(to_void_cast(x->data<XT>()));
    y_mem_.set_data_handle(to_void_cast(y->data<YT>()));
    out_mem_.set_data_handle(out->mutable_data<OT>(ctx.GetPlace()));
  }

  // If initialized, x memory should've been already initialized
  bool IsInitialized() { return initialized_; }

  void SetInitialized() { initialized_ = true; }

 private:
474 475 476 477 478 479
  struct memory_offsets {
    size_t x_offset;
    size_t y_offset;
    size_t out_offset;
  };

480 481 482 483 484
  dnnl::engine engine_;
  dnnl::memory x_mem_;
  dnnl::memory y_mem_;
  dnnl::memory out_mem_;
  dnnl::matmul matmul_prim_;
485 486 487 488
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
489 490 491 492 493 494 495 496
  bool initialized_ = false;
};

template <typename XT, typename YT, typename OT>
static std::shared_ptr<MatMulFactory<XT, YT, OT>> GetPrimitiveFactory(
    const ExecutionContext& ctx) {
  const auto& out_name = ctx.OutputName("Out");
  const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
497
  const auto batch_size = ctx.Input<Tensor>("X")->dims()[0];
498 499
  std::string key = platform::CreateKey(dev_ctx, batch_size, out_name);
  key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

  auto factory =
      std::static_pointer_cast<MatMulFactory<XT, YT, OT>>(dev_ctx.GetBlob(key));
  if (factory == nullptr) {
    factory = std::make_shared<MatMulFactory<XT, YT, OT>>();
    dev_ctx.SetBlob(key, factory);
  }

  return factory;
}

// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
516
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
517 518
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
519
  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
520
    GetPrimitiveFactory<XT, YT, float>(ctx)->CreateAndExecute(ctx);
521 522 523
  } else if (is_bfloat16) {
    GetPrimitiveFactory<XT, YT, paddle::platform::bfloat16>(ctx)
        ->CreateAndExecute(ctx);
524 525 526 527 528 529 530 531 532 533
  } else if (fuse_relu) {
    GetPrimitiveFactory<XT, YT, uint8_t>(ctx)->CreateAndExecute(ctx);
  } else {
    GetPrimitiveFactory<XT, YT, int8_t>(ctx)->CreateAndExecute(ctx);
  }
}

template <typename T>
class DNNLMatMulKernel : public framework::OpKernel<T> {
 public:
534
  void Compute(const ExecutionContext& ctx) const override {
535
    if (ctx.HasAttr("head_number")) {
536 537 538 539 540 541
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"), 1,
          platform::errors::Unimplemented(
              "DNNL matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
542
    }
543
    platform::MKLDNNDeviceContext::tls().log_lib_version();
544 545 546
    ExecuteMatMul<T, T>(ctx);
  }
};
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

template <typename T>
class MatMulGradMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"), 1,
          platform::errors::Unimplemented(
              "DNNL matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
    }
    RunKernel<T>(ctx);
  }

 private:
  void ExecuteMatMulGrad(const ExecutionContext& ctx,
                         const MKLDNNDeviceContext& dev_ctx,
                         const mkldnn::engine& engine, Tensor* x, bool trans_x,
                         bool is_fold_init_dims_x, Tensor* y, bool trans_y,
                         bool is_fold_init_dims_y, Tensor* out,
                         int execution_number) const {
    // gradient is calculated in a different way when broadcasting is used
    bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                        out->dims().size() == 2;

    Tensor x_combined, y_combined;
    if (!need_combine) {
      x_combined = *x;
      y_combined = *y;
    } else {
      x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                       : FoldFirstAndLastDims<T>(dev_ctx, x);
      y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                       : FoldFirstAndLastDims<T>(dev_ctx, y);
    }

    MatMulMKLDNNHandler<T> handler(
        dev_ctx, engine, ctx.GetPlace(), &x_combined, trans_x, &y_combined,
        trans_y, out, ctx.Attr<float>("alpha"),
        ctx.InputName(framework::GradVarName("Out")) +
            std::to_string(execution_number));

    const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
    const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
    const auto dst_memory_p = handler.AcquireDstMemory(out);

    auto matmul_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    matmul_p->execute(astream, matmul_args);
    astream.wait();

    out->set_layout(framework::DataLayout::kMKLDNN);
    out->set_format(platform::GetMKLDNNFormat(dst_memory_p->get_desc().reshape(
        framework::vectorize<int64_t>(out->dims()))));
  }

  template <typename Tout = T>
  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto x = *ctx.Input<Tensor>("X");
    auto y = *ctx.Input<Tensor>("Y");
    auto dout = *ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

    bool transpose_x = ctx.Attr<bool>("transpose_X");
    bool transpose_y = ctx.Attr<bool>("transpose_Y");

    ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);
    framework::DDim dx_dims;
    if (dx) {
      dx_dims = dx->dims();
      if (dx_dims != x.dims()) {
        dx->Resize(x.dims());
      }
    }

    framework::DDim dy_dims;
    if (dy) {
      dy_dims = dy->dims();
      if (dy_dims != y.dims()) {
        dy->Resize(y.dims());
      }
    }

    if (transpose_x && transpose_y) {
      this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, true, true,
                              &dout, true, false, dx, 0);
      this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true,
                              &x, true, false, dy, 1);
    } else if (transpose_x) {
      this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, false, false,
                              &dout, true, false, dx, 0);
      this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, false, false,
                              &dout, false, true, dy, 1);
    } else if (transpose_y) {
      this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
                              &y, false, true, dx, 0);
      this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true,
                              &x, false, true, dy, 1);
    } else {
      this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
                              &y, true, false, dx, 0);
      this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, true, true,
                              &dout, false, true, dy, 1);
    }

    if (dx) {
      if (dx_dims != x.dims()) {
        dx->Resize(dx_dims);
      }
    }
    if (dy) {
      if (dy_dims != y.dims()) {
        dy->Resize(dy_dims);
      }
    }
  }
};

678 679 680 681 682
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul, MKLDNN, ::paddle::platform::CPUPlace,
683 684 685
                   ops::DNNLMatMulKernel<float>,
                   ops::DNNLMatMulKernel<paddle::platform::bfloat16>,
                   ops::DNNLMatMulKernel<int8_t>,
686
                   ops::DNNLMatMulKernel<uint8_t>);
687 688 689 690

REGISTER_OP_KERNEL(matmul_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);