matmul_mkldnn_op.cc 25.9 KB
Newer Older
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16
#include <tuple>
17
#include "paddle/fluid/framework/convert_utils.h"
18 19 20

using dnnl::memory;
using dnnl::primitive;
21 22 23 24
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::framework::vectorize;
using paddle::platform::GetMKLDNNFormat;
25
using paddle::platform::MKLDNNFormatForSize;
26 27 28 29 30 31
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
using Tensor = paddle::framework::Tensor;

namespace {
32

33 34
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
35
static Tensor FoldOuterDims(const Tensor& input) {
36 37 38 39 40 41 42 43 44 45 46 47
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
48 49 50
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext& dev_ctx,
                                   const Tensor* input) {
  auto input_dims = vectorize(input->dims());
51 52 53 54
  if (input_dims.size() != 3) {
    return *input;
  }

55
  Tensor output;
56 57
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

58
  auto output_dims = vectorize(output.dims());
59

60 61
  memory::data_type input_type = paddle::framework::ToMKLDNNDataType(
      paddle::framework::TransToProtoVarType(input->dtype()));
62
  paddle::platform::ReorderMKLDNNHandler reorder_handler(
63 64
      output_dims, paddle::framework::TransToProtoVarType(input->dtype()),
      input_type, dev_ctx.GetEngine());
65 66

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
67 68
      memory::format_tag::abc,
      paddle::platform::to_void_cast(input->data<T>()));
69 70 71 72 73
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

74
  auto& astream = MKLDNNDeviceContext::tls().get_stream();
75 76 77 78 79 80 81 82
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim& x_dim) {
  return x_dim.size() > 1 ? x_dim : paddle::framework::make_ddim({1, x_dim[0]});
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim& y_dim) {
  return y_dim.size() > 1 ? y_dim : paddle::framework::make_ddim({y_dim[0], 1});
}

template <typename XT, typename YT, typename OT>
107
class MatMulMKLDNNHandler
108
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
109
 public:
110
  MatMulMKLDNNHandler(const dnnl::engine engine,
111 112
                      paddle::platform::Place cpu_place, Tensor* x,
                      bool trans_x, Tensor* y, bool trans_y, Tensor* out,
113
                      float scale)
114 115
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    auto mat_dim_x =
        paddle::operators::math::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y =
        paddle::operators::math::CreateMatrixDescriptor(y->dims(), 0, trans_y);

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
        !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

    memory::dims y_strides =
        !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

140 141 142
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, MKLDNNGetDataType<OT>(), out_strides);
143 144 145 146 147

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
148
  }
149
  // Constructor for FWD MatMul
150
  MatMulMKLDNNHandler(const dnnl::engine engine, const ExecutionContext& ctx,
151 152
                      float scale)
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(
153
            engine, ctx.GetPlace()) {
154 155 156 157 158 159 160
    dnnl::primitive_attr attr;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      constexpr unsigned tensor_wide_scale = 0;
      attr.set_output_scales(tensor_wide_scale, {scale_out});
    }

161
    auto matmul_dims_ = GetMatmulDims(ctx);
162 163 164 165 166 167 168 169
    auto x_md = memory::desc(matmul_dims_.x_dims, MKLDNNGetDataType<XT>(),
                             matmul_dims_.x_strides);
    auto y_md = memory::desc(matmul_dims_.y_dims, MKLDNNGetDataType<YT>(),
                             matmul_dims_.y_strides);
    auto out_md = memory::desc(matmul_dims_.out_dims, MKLDNNGetDataType<OT>(),
                               matmul_dims_.out_strides);
    this->AcquireForwardPrimitiveDescriptor(attr, x_md, y_md, out_md);
  }
170 171

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
172
    const YT* input_data = input->data<YT>();
173
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
174
                                            to_void_cast<YT>(input_data));
175 176
  }

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
 public:
  void Execute(const paddle::framework::Tensor* x,
               const paddle::framework::Tensor* y,
               paddle::framework::Tensor* out) {
    const auto src_memory_p = this->AcquireSrcMemory(x);
    const auto weights_memory_p = this->AcquireWeightsMemory(y);
    const auto dst_memory_p = this->AcquireDstMemory(out);

    auto matmul_p = this->AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    // Simulate batch matmul by processing in loop
    void* x_ptr = src_memory_p->get_data_handle();
    void* y_ptr = weights_memory_p->get_data_handle();
    void* out_ptr = dst_memory_p->get_data_handle();
    auto offsets = this->GetOffsets();
    for (uint16_t i = 0; i < this->GetBatchSize(); ++i) {
      src_memory_p->set_data_handle(x_ptr);
      weights_memory_p->set_data_handle(y_ptr);
      dst_memory_p->set_data_handle(out_ptr);
      matmul_p->execute(astream, {
204 205 206
                                     {DNNL_ARG_SRC, *src_memory_p},
                                     {DNNL_ARG_WEIGHTS, *weights_memory_p},
                                     {DNNL_ARG_DST, *dst_memory_p},
207 208 209 210 211 212
                                 });
      x_ptr = static_cast<char*>(x_ptr) + std::get<0>(offsets);
      y_ptr = static_cast<char*>(y_ptr) + std::get<1>(offsets);
      out_ptr = static_cast<char*>(out_ptr) + std::get<2>(offsets);
    }
    astream.wait();
213

214 215 216 217
    auto format =
        MKLDNNFormatForSize(out->dims().size(), dnnl::memory::format_tag::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
218 219
  }

220
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
221 222 223 224 225 226 227 228 229 230 231
      paddle::framework::Tensor* output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
232 233 234 235
  }

 private:
  struct MatMulDims {
236 237
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
238 239
  };

240 241
  std::pair<paddle::operators::math::MatDescriptor, memory::dims>
  GetInputDimsAndStrides(const ExecutionContext& ctx, std::string input_name) {
242 243 244 245 246
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
      auto it_zero = std::find(shape.begin(), shape.end(), 0);
      if (it_zero != shape.end()) {
        for (uint64_t i = 0; i < shape.size(); i++) {
          if (shape[i] == 0) {
            PADDLE_ENFORCE_LT(
                i, input_dims.size(),
                paddle::platform::errors::InvalidArgument(
                    "The index of 0 in fused_reshape_%s ",
                    "should be less than output dim size, ",
                    "but the index is %d and output dim size is %d", input_name,
                    i, input_dims.size()));
            shape[i] = input_dims.at(i);
          }
        }
      }

      // if "-1" is present then one of reshape dims must be infered
      auto it_negative = std::find(shape.begin(), shape.end(), -1);
      if (it_negative != shape.end()) {
        int64_t dim_product = 1;
        for (int i = 0; i < input_dims.size(); i++) {
          dim_product *= input_dims.at(i);
        }

        int64_t shape_product = std::accumulate(shape.begin(), shape.end(), -1,
                                                std::multiplies<int>());
        int index = std::distance(shape.begin(), it_negative);
        shape[index] = dim_product / shape_product;
      }

277 278 279 280 281
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
282 283 284 285
    paddle::operators::math::MatDescriptor mat_dim =
        paddle::operators::math::CreateMatrixDescriptor(
            MatrixDimsFromVector(new_dims), 0,
            ctx.Attr<bool>("transpose_" + input_name));
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

305 306 307 308 309 310 311 312 313
  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

314 315 316 317 318
  bool IsInputFused(const ExecutionContext& ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

319 320 321 322 323 324 325
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

326
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
327
    paddle::operators::math::MatDescriptor mat_dim_x;
328 329
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
330
    paddle::operators::math::MatDescriptor mat_dim_y;
331 332
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");
333

334 335
    auto x_bs = mat_dim_x.batch_size_;
    auto y_bs = mat_dim_y.batch_size_;
336
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs, false,
337
                      paddle::platform::errors::InvalidArgument(
338 339 340
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

341
    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
342 343 344
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
345 346

    batch_size_ = 1;
347
    if (out_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
348 349 350
      auto& x_dims = ctx.Input<Tensor>("X")->dims();
      auto& y_dims = ctx.Input<Tensor>("Y")->dims();
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
351 352 353
      x_bs /= batch_size_;
      y_bs /= batch_size_;
      out_bs /= batch_size_;
354
    }
355 356 357
    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};
358

359 360 361
    x_offset_ = x_bs * M * K * sizeof(XT);
    y_offset_ = y_bs * K * N * sizeof(YT);
    out_offset_ = out_bs * M * N * sizeof(OT);
362 363

    // Translate transA and transB
364 365 366 367 368 369
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
370 371
    memory::dims out_strides = memory::dims{M * N, N, 1};

372
    CorrectStridesWhenFloatOutputFused(ctx, N, out_bs, &out_strides);
373 374

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
375 376
  }

377 378 379 380
  std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                 const std::vector<int>& axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();
381

382 383 384 385
    auto axis_set = std::set<int>(axis.begin(), axis.end());
    PADDLE_ENFORCE_EQ(axis_set.size(), axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));
386

387 388 389 390 391 392 393
    PADDLE_ENFORCE_EQ(in_rank, axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "The input dimension's size "
                          "should be equal to the axis's size. "
                          "But received dimension is %d, "
                          "axis's size is %d",
                          in_rank, axis_size));
394

395 396 397
    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()), axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));
398

399 400 401 402 403
    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
404 405
  }

406 407 408 409 410
  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
                                          const memory::dim N, memory::dim b,
                                          memory::dims* out_strides) const {
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
411
    }
412 413
  }

414
  uint16_t GetBatchSize(void) const { return batch_size_; }
415

416 417
  std::tuple<uint32_t, uint32_t, uint32_t> GetOffsets() const {
    return std::make_tuple(x_offset_, y_offset_, out_offset_);
418 419 420
  }

 private:
421 422 423 424
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
425 426
};

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
    Tensor* x, const paddle::operators::math::MatDescriptor& descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutToMatrixSequence(Tensor* x, Tensor* y, Tensor* out,
                                         bool trans_x, bool trans_y) {
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
  auto mat_dim_x =
      paddle::operators::math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y =
      paddle::operators::math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
475 476
  }

477 478
  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
479 480
}

481
// Choose appropriate Handler instances based on inferred
482 483 484 485
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
486
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
487 488
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
489 490 491 492 493 494 495
  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Output<Tensor>("Out");
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
  const auto& dev_ctx =
      ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();

496
  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
497 498
    MatMulMKLDNNHandler<XT, YT, float>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
499
  } else if (is_bfloat16) {
500 501 502
    MatMulMKLDNNHandler<XT, YT, paddle::platform::bfloat16>(dev_ctx.GetEngine(),
                                                            ctx, alpha)
        .Execute(x, y, out);
503
  } else if (fuse_relu) {
504 505
    MatMulMKLDNNHandler<XT, YT, uint8_t>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
506
  } else {
507 508
    MatMulMKLDNNHandler<XT, YT, int8_t>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
509 510 511 512
  }
}

template <typename T>
513
class MatMulMKLDNNKernel : public paddle::framework::OpKernel<T> {
514
 public:
515
  void Compute(const ExecutionContext& ctx) const override {
516
    if (ctx.HasAttr("head_number")) {
517 518
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"), 1,
519
          paddle::platform::errors::Unimplemented(
520
              "oneDNN matmul doesn't support multiple heads. Expected "
521 522
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
523 524 525 526
    }
    ExecuteMatMul<T, T>(ctx);
  }
};
527

528 529 530 531 532
}  // anonymous namespace

namespace paddle {
namespace operators {

533
template <typename T>
534 535 536 537 538
void MatMulGradMKLDNNKernel<T>::Compute(const ExecutionContext& ctx) const {
  if (ctx.HasAttr("head_number")) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<int>("head_number"), 1,
        platform::errors::Unimplemented(
539
            "oneDNN matmul doesn't support multiple heads. Expected "
540 541
            "head_number=1. But received `head_number` is %d",
            ctx.Attr<int>("head_number")));
542
  }
543 544
  RunKernel(ctx);
}
545

546 547 548
template <typename T>
void MatMulGradMKLDNNKernel<T>::ExecuteMatMulGrad(
    const ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx,
549
    const dnnl::engine& engine, Tensor* x, bool trans_x,
550
    bool is_fold_init_dims_x, Tensor* y, bool trans_y, bool is_fold_init_dims_y,
551
    Tensor* out) const {
552 553 554 555 556 557 558 559 560 561 562 563 564 565
  // gradient is calculated in a different way when broadcasting is used
  bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                      out->dims().size() == 2;

  Tensor x_combined, y_combined;
  if (!need_combine) {
    x_combined = *x;
    y_combined = *y;
  } else {
    x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                     : FoldFirstAndLastDims<T>(dev_ctx, x);
    y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                     : FoldFirstAndLastDims<T>(dev_ctx, y);
  }
566

567
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
568

569 570 571
  MatMulMKLDNNHandler<T, T, T> handler(engine, ctx.GetPlace(), &x_combined,
                                       trans_x, &y_combined, trans_y, out,
                                       alpha);
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

  const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

  out->set_layout(framework::DataLayout::kMKLDNN);
  out->set_format(platform::GetMKLDNNFormat(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims()))));
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::RunKernel(const ExecutionContext& ctx) const {
  const auto& dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto& onednn_engine = dev_ctx.GetEngine();

  auto x = *ctx.Input<Tensor>("X");
  auto y = *ctx.Input<Tensor>("Y");
  auto dout = *ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

  bool transpose_x = ctx.HasAttr("transpose_X") ? ctx.Attr<bool>("transpose_X")
                                                : ctx.Attr<bool>("trans_x");
  bool transpose_y = ctx.HasAttr("transpose_Y") ? ctx.Attr<bool>("transpose_Y")
                                                : ctx.Attr<bool>("trans_y");

  ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

  framework::DDim dx_dims;
  if (dx) {
    dx_dims = dx->dims();
    if (dx_dims != x.dims()) {
      dx->Resize(x.dims());
617
    }
618
  }
619

620 621 622 623 624
  framework::DDim dy_dims;
  if (dy) {
    dy_dims = dy->dims();
    if (dy_dims != y.dims()) {
      dy->Resize(y.dims());
625
    }
626
  }
627

628 629
  if (transpose_x && transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, true, true, &dout,
630
                            true, false, dx);
631
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
632
                            true, false, dy);
633 634
  } else if (transpose_x) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, false, false,
635
                            &dout, true, false, dx);
636
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, false, false,
637
                            &dout, false, true, dy);
638 639
  } else if (transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
640
                            &y, false, true, dx);
641
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
642
                            false, true, dy);
643 644
  } else {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
645
                            &y, true, false, dx);
646
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, true, true, &dout,
647
                            false, true, dy);
648 649 650 651 652 653
  }

  if (dx) {
    if (dx_dims != x.dims()) {
      dx->Resize(dx_dims);
      dx->set_format(x.format());
654
    }
655 656 657 658 659
  }
  if (dy) {
    if (dy_dims != y.dims()) {
      dy->Resize(dy_dims);
      dy->set_format(y.format());
660 661
    }
  }
662 663 664 665
}

template class MatMulGradMKLDNNKernel<float>;
template class MatMulGradMKLDNNKernel<paddle::platform::bfloat16>;
666

667 668 669 670 671
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul, MKLDNN, ::paddle::platform::CPUPlace,
672 673 674
                   MatMulMKLDNNKernel<float>,
                   MatMulMKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulMKLDNNKernel<int8_t>, MatMulMKLDNNKernel<uint8_t>);
675 676 677 678

REGISTER_OP_KERNEL(matmul_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);