matmul_mkldnn_op.cc 26.6 KB
Newer Older
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16

17
#include <tuple>
18

19
#include "paddle/fluid/framework/convert_utils.h"
20 21 22

using dnnl::memory;
using dnnl::primitive;
23 24 25 26
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::platform::GetMKLDNNFormat;
using paddle::platform::MKLDNNDeviceContext;
27
using paddle::platform::MKLDNNFormatForSize;
28 29
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
30
using phi::vectorize;
31 32 33
using Tensor = paddle::framework::Tensor;

namespace {
34

35 36
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
37
static Tensor FoldOuterDims(const Tensor& input) {
38 39 40 41 42 43 44 45 46 47 48 49
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
50 51 52
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext& dev_ctx,
                                   const Tensor* input) {
  auto input_dims = vectorize(input->dims());
53 54 55 56
  if (input_dims.size() != 3) {
    return *input;
  }

57
  Tensor output;
58 59
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

60
  auto output_dims = vectorize(output.dims());
61

62 63
  memory::data_type input_type = paddle::framework::ToMKLDNNDataType(
      paddle::framework::TransToProtoVarType(input->dtype()));
64
  paddle::platform::ReorderMKLDNNHandler reorder_handler(
65 66 67 68
      output_dims,
      paddle::framework::TransToProtoVarType(input->dtype()),
      input_type,
      dev_ctx.GetEngine());
69 70

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
71 72
      memory::format_tag::abc,
      paddle::platform::to_void_cast(input->data<T>()));
73 74 75 76 77
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

78
  auto& astream = MKLDNNDeviceContext::tls().get_stream();
79 80 81 82 83 84 85 86
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
87 88 89 90 91 92 93 94 95 96 97 98 99
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim& x_dim) {
100
  return x_dim.size() > 1 ? x_dim : phi::make_ddim({1, x_dim[0]});
101 102 103 104 105 106
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim& y_dim) {
107
  return y_dim.size() > 1 ? y_dim : phi::make_ddim({y_dim[0], 1});
108 109 110
}

template <typename XT, typename YT, typename OT>
111
class MatMulMKLDNNHandler
112
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
113
 public:
114
  MatMulMKLDNNHandler(const dnnl::engine engine,
115 116 117 118 119 120
                      paddle::platform::Place cpu_place,
                      Tensor* x,
                      bool trans_x,
                      Tensor* y,
                      bool trans_y,
                      Tensor* out,
121
                      float scale)
122 123
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
124 125
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y->dims(), 0, trans_y);
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
        !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

    memory::dims y_strides =
        !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

146 147 148
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, MKLDNNGetDataType<OT>(), out_strides);
149 150 151 152 153

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
154
  }
155
  // Constructor for FWD MatMul
156
  MatMulMKLDNNHandler(const dnnl::engine engine, const ExecutionContext& ctx)
157
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(
158
            engine, ctx.GetPlace()) {
159
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);
160

161
    auto matmul_dims_ = GetMatmulDims(ctx);
162 163 164 165 166 167
    auto x_md = memory::desc(
        matmul_dims_.x_dims, MKLDNNGetDataType<XT>(), matmul_dims_.x_strides);
    auto y_md = memory::desc(
        matmul_dims_.y_dims, MKLDNNGetDataType<YT>(), matmul_dims_.y_strides);
    auto out_md = memory::desc(matmul_dims_.out_dims,
                               MKLDNNGetDataType<OT>(),
168
                               matmul_dims_.out_strides);
169
    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
170
  }
171 172

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
173
    const YT* input_data = input->data<YT>();
174
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
175
                                            to_void_cast<YT>(input_data));
176 177
  }

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
 public:
  void Execute(const paddle::framework::Tensor* x,
               const paddle::framework::Tensor* y,
               paddle::framework::Tensor* out) {
    const auto src_memory_p = this->AcquireSrcMemory(x);
    const auto weights_memory_p = this->AcquireWeightsMemory(y);
    const auto dst_memory_p = this->AcquireDstMemory(out);

    auto matmul_p = this->AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    // Simulate batch matmul by processing in loop
    void* x_ptr = src_memory_p->get_data_handle();
    void* y_ptr = weights_memory_p->get_data_handle();
    void* out_ptr = dst_memory_p->get_data_handle();
    auto offsets = this->GetOffsets();
    for (uint16_t i = 0; i < this->GetBatchSize(); ++i) {
      src_memory_p->set_data_handle(x_ptr);
      weights_memory_p->set_data_handle(y_ptr);
      dst_memory_p->set_data_handle(out_ptr);
204 205 206 207 208 209
      matmul_p->execute(astream,
                        {
                            {DNNL_ARG_SRC, *src_memory_p},
                            {DNNL_ARG_WEIGHTS, *weights_memory_p},
                            {DNNL_ARG_DST, *dst_memory_p},
                        });
210 211 212 213 214
      x_ptr = static_cast<char*>(x_ptr) + std::get<0>(offsets);
      y_ptr = static_cast<char*>(y_ptr) + std::get<1>(offsets);
      out_ptr = static_cast<char*>(out_ptr) + std::get<2>(offsets);
    }
    astream.wait();
215

216 217 218 219
    auto format =
        MKLDNNFormatForSize(out->dims().size(), dnnl::memory::format_tag::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
220 221
  }

222
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
223 224 225 226 227 228 229 230 231 232 233
      paddle::framework::Tensor* output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
234 235 236 237
  }

 private:
  struct MatMulDims {
238 239
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
240 241
  };

242 243 244 245 246 247 248 249 250 251 252
  phi::DDim GetDimForInput(const ExecutionContext& ctx,
                           std::string input_name) {
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    if (!shape.empty() && !axis.empty()) {
      auto it_zero = std::find(shape.begin(), shape.end(), 0);
      if (it_zero != shape.end()) {
        for (uint64_t i = 0; i < shape.size(); i++) {
          if (shape[i] == 0) {
            PADDLE_ENFORCE_LT(
253 254
                i,
                input_dims.size(),
255 256 257
                paddle::platform::errors::InvalidArgument(
                    "The index of 0 in fused_reshape_%s ",
                    "should be less than output dim size, ",
258 259 260 261
                    "but the index is %d and output dim size is %d",
                    input_name,
                    i,
                    input_dims.size()));
262 263 264 265 266 267 268 269 270 271
            shape[i] = input_dims.at(i);
          }
        }
      }

      return input_dims.reshape(shape).transpose(axis);
    }
    return input_dims;
  }

272
  std::pair<phi::funcs::MatDescriptor, memory::dims> GetInputDimsAndStrides(
273
      const ExecutionContext& ctx, std::string input_name) {
274 275 276 277 278
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
279 280 281 282 283
      auto it_zero = std::find(shape.begin(), shape.end(), 0);
      if (it_zero != shape.end()) {
        for (uint64_t i = 0; i < shape.size(); i++) {
          if (shape[i] == 0) {
            PADDLE_ENFORCE_LT(
284 285
                i,
                input_dims.size(),
286 287 288
                paddle::platform::errors::InvalidArgument(
                    "The index of 0 in fused_reshape_%s ",
                    "should be less than output dim size, ",
289 290 291 292
                    "but the index is %d and output dim size is %d",
                    input_name,
                    i,
                    input_dims.size()));
293 294 295 296 297
            shape[i] = input_dims.at(i);
          }
        }
      }

298 299 300 301 302
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
303
    phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
304 305
        MatrixDimsFromVector(new_dims),
        0,
306
        ctx.Attr<bool>("transpose_" + input_name));
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

326 327 328 329 330 331 332 333 334
  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

335 336 337 338 339
  bool IsInputFused(const ExecutionContext& ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

340 341 342 343 344 345 346
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

347
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
348
    phi::funcs::MatDescriptor mat_dim_x;
349 350
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
351
    phi::funcs::MatDescriptor mat_dim_y;
352 353
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");
354

355 356
    auto x_bs = mat_dim_x.batch_size_;
    auto y_bs = mat_dim_y.batch_size_;
357 358
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs,
                      false,
359
                      paddle::platform::errors::InvalidArgument(
360 361 362
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

363
    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
364 365 366
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
367 368

    batch_size_ = 1;
369
    if (out_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
370 371
      auto x_dims = GetDimForInput(ctx, "X");
      auto y_dims = GetDimForInput(ctx, "Y");
372
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
373 374 375
      x_bs /= batch_size_;
      y_bs /= batch_size_;
      out_bs /= batch_size_;
376
    }
377 378 379
    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};
380

381 382 383
    x_offset_ = x_bs * M * K * sizeof(XT);
    y_offset_ = y_bs * K * N * sizeof(YT);
    out_offset_ = out_bs * M * N * sizeof(OT);
384 385

    // Translate transA and transB
386 387 388 389 390 391
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
392 393
    memory::dims out_strides = memory::dims{M * N, N, 1};

394
    CorrectStridesWhenFloatOutputFused(ctx, N, out_bs, &out_strides);
395 396

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
397 398
  }

399 400 401 402
  std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                 const std::vector<int>& axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();
403

404
    auto axis_set = std::set<int>(axis.begin(), axis.end());
405 406
    PADDLE_ENFORCE_EQ(axis_set.size(),
                      axis_size,
407 408
                      paddle::platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));
409

410 411
    PADDLE_ENFORCE_EQ(in_rank,
                      axis_size,
412 413 414 415 416
                      paddle::platform::errors::InvalidArgument(
                          "The input dimension's size "
                          "should be equal to the axis's size. "
                          "But received dimension is %d, "
                          "axis's size is %d",
417 418
                          in_rank,
                          axis_size));
419

420 421
    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()),
                      axis_size,
422 423
                      paddle::platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));
424

425 426 427 428 429
    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
430 431
  }

432
  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
433 434
                                          const memory::dim N,
                                          memory::dim b,
435 436 437
                                          memory::dims* out_strides) const {
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
438
    }
439 440
  }

441
  uint16_t GetBatchSize(void) const { return batch_size_; }
442

443 444
  std::tuple<uint32_t, uint32_t, uint32_t> GetOffsets() const {
    return std::make_tuple(x_offset_, y_offset_, out_offset_);
445 446
  }

447 448 449 450 451 452 453 454 455 456 457 458 459
  dnnl::primitive_attr CreateMatmulAttrs(const ExecutionContext& ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
    }

    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
  }

460
 private:
461 462 463 464
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
465 466
};

467 468 469 470 471 472 473
/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
474
    Tensor* x, const phi::funcs::MatDescriptor& descriptor) {
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
502 503
static void ReshapeXYOutToMatrixSequence(
    Tensor* x, Tensor* y, Tensor* out, bool trans_x, bool trans_y) {
504 505
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
506 507
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
508 509 510 511
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
512 513
                 mat_dim_x.height_,
                 mat_dim_y.width_});
514 515
  }

516 517
  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
518 519
}

520
// Choose appropriate Handler instances based on inferred
521 522 523 524
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
525
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
526 527
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
528 529 530 531 532
  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Output<Tensor>("Out");
  const auto& dev_ctx =
      ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
533
  const auto& onednn_engine = dev_ctx.GetEngine();
534

535
  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
536
    MatMulMKLDNNHandler<XT, YT, float>(onednn_engine, ctx).Execute(x, y, out);
537
  } else if (is_bfloat16) {
538
    MatMulMKLDNNHandler<XT, YT, paddle::platform::bfloat16>(onednn_engine, ctx)
539
        .Execute(x, y, out);
540
  } else if (fuse_relu) {
541
    MatMulMKLDNNHandler<XT, YT, uint8_t>(onednn_engine, ctx).Execute(x, y, out);
542
  } else {
543
    MatMulMKLDNNHandler<XT, YT, int8_t>(onednn_engine, ctx).Execute(x, y, out);
544 545 546 547
  }
}

template <typename T>
548
class MatMulMKLDNNKernel : public paddle::framework::OpKernel<T> {
549
 public:
550
  void Compute(const ExecutionContext& ctx) const override {
551
    if (ctx.HasAttr("head_number")) {
552
      PADDLE_ENFORCE_EQ(
553 554
          ctx.Attr<int>("head_number"),
          1,
555
          paddle::platform::errors::Unimplemented(
556
              "oneDNN matmul doesn't support multiple heads. Expected "
557 558
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
559 560 561 562
    }
    ExecuteMatMul<T, T>(ctx);
  }
};
563

564 565 566 567 568
}  // anonymous namespace

namespace paddle {
namespace operators {

569
template <typename T>
570 571 572
void MatMulGradMKLDNNKernel<T>::Compute(const ExecutionContext& ctx) const {
  if (ctx.HasAttr("head_number")) {
    PADDLE_ENFORCE_EQ(
573 574
        ctx.Attr<int>("head_number"),
        1,
575
        platform::errors::Unimplemented(
576
            "oneDNN matmul doesn't support multiple heads. Expected "
577 578
            "head_number=1. But received `head_number` is %d",
            ctx.Attr<int>("head_number")));
579
  }
580 581
  RunKernel(ctx);
}
582

583 584
template <typename T>
void MatMulGradMKLDNNKernel<T>::ExecuteMatMulGrad(
585 586 587 588 589 590 591 592 593
    const ExecutionContext& ctx,
    const MKLDNNDeviceContext& dev_ctx,
    const dnnl::engine& engine,
    Tensor* x,
    bool trans_x,
    bool is_fold_init_dims_x,
    Tensor* y,
    bool trans_y,
    bool is_fold_init_dims_y,
594
    Tensor* out) const {
595 596 597 598 599 600 601 602 603 604 605 606 607 608
  // gradient is calculated in a different way when broadcasting is used
  bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                      out->dims().size() == 2;

  Tensor x_combined, y_combined;
  if (!need_combine) {
    x_combined = *x;
    y_combined = *y;
  } else {
    x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                     : FoldFirstAndLastDims<T>(dev_ctx, x);
    y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                     : FoldFirstAndLastDims<T>(dev_ctx, y);
  }
609

610
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
611

612 613 614 615 616 617 618
  MatMulMKLDNNHandler<T, T, T> handler(engine,
                                       ctx.GetPlace(),
                                       &x_combined,
                                       trans_x,
                                       &y_combined,
                                       trans_y,
                                       out,
619
                                       alpha);
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

  const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

  out->set_layout(framework::DataLayout::kMKLDNN);
  out->set_format(platform::GetMKLDNNFormat(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims()))));
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::RunKernel(const ExecutionContext& ctx) const {
  const auto& dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto& onednn_engine = dev_ctx.GetEngine();

  auto x = *ctx.Input<Tensor>("X");
  auto y = *ctx.Input<Tensor>("Y");
  auto dout = *ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

  bool transpose_x = ctx.HasAttr("transpose_X") ? ctx.Attr<bool>("transpose_X")
                                                : ctx.Attr<bool>("trans_x");
  bool transpose_y = ctx.HasAttr("transpose_Y") ? ctx.Attr<bool>("transpose_Y")
                                                : ctx.Attr<bool>("trans_y");

  ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

  framework::DDim dx_dims;
  if (dx) {
    dx_dims = dx->dims();
    if (dx_dims != x.dims()) {
      dx->Resize(x.dims());
665
    }
666
  }
667

668 669 670 671 672
  framework::DDim dy_dims;
  if (dy) {
    dy_dims = dy->dims();
    if (dy_dims != y.dims()) {
      dy->Resize(y.dims());
673
    }
674
  }
675

676
  if (transpose_x && transpose_y) {
677 678 679 680
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &y, true, true, &dout, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, true, true, &x, true, false, dy);
681
  } else if (transpose_x) {
682 683 684 685
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &y, false, false, &dout, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &x, false, false, &dout, false, true, dy);
686
  } else if (transpose_y) {
687 688 689 690
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, false, false, &y, false, true, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, true, true, &x, false, true, dy);
691
  } else {
692 693 694 695
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, false, false, &y, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &x, true, true, &dout, false, true, dy);
696 697 698 699 700 701
  }

  if (dx) {
    if (dx_dims != x.dims()) {
      dx->Resize(dx_dims);
      dx->set_format(x.format());
702
    }
703 704 705 706 707
  }
  if (dy) {
    if (dy_dims != y.dims()) {
      dy->Resize(dy_dims);
      dy->set_format(y.format());
708 709
    }
  }
710 711 712 713
}

template class MatMulGradMKLDNNKernel<float>;
template class MatMulGradMKLDNNKernel<paddle::platform::bfloat16>;
714

715 716 717 718
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

719 720 721
REGISTER_OP_KERNEL(matmul,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
722 723
                   MatMulMKLDNNKernel<float>,
                   MatMulMKLDNNKernel<paddle::platform::bfloat16>,
724 725
                   MatMulMKLDNNKernel<int8_t>,
                   MatMulMKLDNNKernel<uint8_t>);
726

727 728 729
REGISTER_OP_KERNEL(matmul_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
730 731
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);