reshape_op.cc 32.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include <string>
W
wanghuancoder 已提交
16

Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
19

20 21
// only can include the headers in paddle/pten/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
22
#include "paddle/pten/common/scalar_array.h"
23 24
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/manipulation.h"
W
wanghuancoder 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

Y
Yibing Liu 已提交
40 41 42
namespace paddle {
namespace operators {

43 44 45 46 47 48 49 50
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
51 52
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
53 54 55 56 57
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
58 59
    if (platform::is_gpu_place(tensor->place()) ||
        platform::is_xpu_place(tensor->place())) {
60 61 62 63 64 65 66 67 68 69 70 71
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
72 73 74 75 76 77 78 79
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
80
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
81 82
                      platform::errors::InvalidArgument(
                          "Input(X) of ReshapeOp should not be null."));
83
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
84 85
                      platform::errors::InvalidArgument(
                          "Output(Out) of ReshapeOp should not be null."));
Y
yuyang18 已提交
86

87 88
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
89
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
90 91
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
92 93 94 95 96
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
97 98 99 100 101 102 103
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
104 105 106 107 108
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
109 110 111 112 113 114 115
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
116

117 118 119 120 121 122 123 124 125 126 127
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
128 129
      return;
    }
130 131

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
132 133 134 135 136
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
137

138 139 140 141
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
155 156 157
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
158 159 160 161 162 163 164 165 166 167
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
168 169
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
170 171 172 173
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
                framework::make_ddim(shape), i));
Y
yuyang18 已提交
174 175
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
176 177
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
178 179 180 181 182 183
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
                framework::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
184
      } else {
185 186
        PADDLE_ENFORCE_GT(
            shape[i], 0,
187 188
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
189
                "be negative except one unknown dimension. "
190 191
                "But received  shape = [%s], shape[%d] = %d.",
                framework::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
192 193
      }

194 195
      // NOTE all non-zero values will be converted to True (include negative
      // value)
Y
yuyang18 已提交
196 197 198 199 200 201
      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
202
      if (all_positive) {
Y
yuyang18 已提交
203 204 205 206 207
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
208 209 210 211 212 213 214
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
215
                "'shape' is [%s], known capacity of 'shape' is %d.",
216
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
yuyang18 已提交
217 218 219 220
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
221 222 223
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
224 225 226 227 228 229 230
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
231
      }
Y
yuyang18 已提交
232
    }
233 234 235 236 237

    // support reshape with zero-input(input tensor with product(shape) == 0)
    // by now we require that if the input tensor is zero shape, the target
    // shape of output must be zero
    if (in_size == 0) {
J
JZ-LIANG 已提交
238
      PADDLE_ENFORCE_LE(
239 240 241 242 243 244 245 246 247
          capacity, in_size,
          platform::errors::InvalidArgument(
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X's shape = [%s], X's capacity = %d."
              "But the target shape of Out is [%s],  the "
              "capacity of 'Out' is %d.",
              in_dims, in_size, framework::make_ddim(shape), capacity));
    }

Y
yuyang18 已提交
248 249 250 251 252 253
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
254 255 256 257
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
258
  }
259 260 261 262 263 264 265 266 267 268

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
269 270
};

Y
Yibing Liu 已提交
271 272
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
273
  void Make() override {
274 275
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
276 277 278
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
279
             "set correctly to guarantee shape inference in compile time.")
280
        .AsDispensable();
281 282
    AddInput(
        "ShapeTensor",
283 284 285 286
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
287 288
        .AsDuplicable()
        .AsDispensable();
289
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
290
    AddAttr<std::vector<int>>(
291 292 293 294
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
295
        .SetDefault({});
296 297
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
Z
zmx 已提交
298 299
        .SetDefault(false)
        .AsExtra();
K
kexinzhao 已提交
300 301
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
302

303 304
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
305

C
caoying03 已提交
306
Examples:
Y
Yibing Liu 已提交
307

C
caoying03 已提交
308 309 310 311
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

312
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
313 314 315 316 317 318
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

319
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
320 321 322 323
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
324

C
caoying03 已提交
325
Note:
Y
Yibing Liu 已提交
326

C
caoying03 已提交
327 328 329
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
330 331

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
332
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
333
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
334
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
335 336

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
337
Attr(shape) still should be set correctly to guarantee shape inference in
338
compile-time.
Y
Yibing Liu 已提交
339

Y
Yibing Liu 已提交
340 341 342 343 344 345 346 347 348 349 350 351
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

352
  void InferShape(framework::InferShapeContext *ctx) const override {
353 354 355
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) shouldn't be null."));
356
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
357 358
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
Q
Qiao Longfei 已提交
359
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
360
  }
361 362 363 364

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
365 366 367 368
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
369
  }
Y
Yibing Liu 已提交
370 371
};

Y
yuyang18 已提交
372 373 374 375 376
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
377 378 379
    // framework::DDim out_dims = out->dims();
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*in);

380 381 382 383 384 385 386
    // we can't MakePtenDenseTensor by out, because the out of reshape may have
    // multiple states, some can MakePtenDenseTensor but other's cannot:
    // 1. out tensor is not initialized
    // 2. out tensor is input (complete inplace)
    // 3. out tensor is view of input
    // We can't MakePtenDenseTensor for case 2, so we solve this case by
    // creating a temporary tensor here:
387 388 389
    pten::DenseTensorMeta meta{pten::TransToPtenDataType(in->type()),
                               in->dims(),
                               pten::TransToPtenDataLayout(in->layout())};
390 391 392 393
    auto pt_out_tmp = std::make_shared<pten::DenseTensor>(
        pten::make_intrusive<paddle::experimental::SharedStorage>(
            ctx.GetPlace()),
        std::move(meta));
394
    pten::DenseTensor *pt_out = nullptr;
395 396 397
    if (in != nullptr && out != nullptr && in->Holder() != nullptr &&
        out->Holder() != nullptr &&
        in->Holder()->ptr() == out->Holder()->ptr()) {
398 399 400 401
      pt_out = pt_x.get();
    } else {
      pt_out = pt_out_tmp.get();
    }
Y
yuyang18 已提交
402

403 404
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
405 406 407
    auto *shape_tensor = ctx.HasInput("Shape")
                             ? ctx.Input<framework::LoDTensor>("Shape")
                             : nullptr;
408
    pten::ScalarArray pt_scalar_shape;
409 410
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
411 412 413 414 415 416 417 418 419 420 421 422 423
      std::vector<pten::DenseTensor> pt_vec_shape;
      for (auto &tensor : list_new_shape_tensor) {
        if (platform::is_gpu_place(tensor->place()) ||
            platform::is_xpu_place(tensor->place())) {
          framework::Tensor temp;
          TensorCopySync(*tensor, platform::CPUPlace(), &temp);
          pt_vec_shape.push_back(
              std::move(*(paddle::experimental::MakePtenDenseTensor(temp))));
        } else {
          pt_vec_shape.push_back(
              std::move(*(paddle::experimental::MakePtenDenseTensor(*tensor))));
        }
      }
424
      pt_scalar_shape = pten::ScalarArray(pt_vec_shape);
425 426 427 428 429 430 431 432 433 434
    } else if (shape_tensor) {
      std::unique_ptr<pten::DenseTensor> pt_shape;
      if (platform::is_gpu_place(shape_tensor->place()) ||
          platform::is_xpu_place(shape_tensor->place())) {
        framework::Tensor temp;
        TensorCopySync(*shape_tensor, platform::CPUPlace(), &temp);
        pt_shape = paddle::experimental::MakePtenDenseTensor(temp);
      } else {
        pt_shape = paddle::experimental::MakePtenDenseTensor(*shape_tensor);
      }
435
      pt_scalar_shape = pten::ScalarArray(*pt_shape.get());
436
    } else {
437
      auto &shape_attr = ctx.Attr<std::vector<int>>("shape");
438 439 440 441 442 443
      pt_scalar_shape = pten::ScalarArray(shape_attr);
    }
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
      pten::Reshape(dev_ctx, *pt_x.get(), pt_scalar_shape, pt_out);
    }
444
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
445 446 447 448
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
      pten::Reshape(dev_ctx, *pt_x.get(), pt_scalar_shape, pt_out);
    }
449 450
#endif
#ifdef PADDLE_WITH_XPU
451 452 453
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
      pten::Reshape(dev_ctx, *pt_x.get(), pt_scalar_shape, pt_out);
454
    }
455
#endif
456 457 458
    // non-inplace need move all result from pt_out to out, inplace need set
    // result dims.
    if (in != out) {
459
      paddle::experimental::SharesStorage(pt_out, static_cast<Tensor *>(out));
460 461
    } else {
      out->Resize(pt_out->dims());
Y
yuyang18 已提交
462
    }
Y
yuyang18 已提交
463
  }
Y
yuyang18 已提交
464 465 466 467 468 469 470
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
471
    auto in_dims = d_x->dims();
Y
yuyang18 已提交
472

473
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
474 475 476
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
D
dzhwinter 已提交
477
    d_x->Resize(in_dims);
Y
yuyang18 已提交
478
  }
Y
yuyang18 已提交
479 480
};

481 482 483 484 485 486 487 488 489
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");

    auto out_dims = dd_out->dims();

    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
490 491 492
    framework::TensorCopy(
        *dd_x, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dd_out);
493 494 495 496
    dd_out->Resize(out_dims);
  }
};

497 498 499 500 501 502 503 504 505 506 507 508 509
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
510
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
511 512
                      platform::errors::InvalidArgument(
                          "Output(XShape) of ReshapeOp should not be null."));
513 514 515 516 517 518 519 520
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
521 522

    ReshapeOp::InferShape(ctx);
523
  }
524 525 526

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
527
    std::string shape;
528 529
    auto multi_inputs = ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (multi_inputs.size() > 0) {
530
      shape = "ShapeTensor";
531
    } else if (ctx.HasInput("Shape")) {
532
      shape = "Shape";
533
    } else {
534
      shape = "shape";
535
    }
536
    return framework::KernelSignature("reshape", {"X"}, {shape}, {"Out"});
537
  }
538 539 540 541 542 543 544 545 546 547
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
548 549 550 551
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
552
        .SetDefault(false);
553 554 555 556 557
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
558 559 560
  }
};

H
hong 已提交
561 562
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
563
 public:
H
hong 已提交
564
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
565

566
  void Apply(GradOpPtr<T> grad_op) const override {
567
    grad_op->SetType("reshape2_grad");
H
hong 已提交
568 569 570 571
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
572 573 574
  }
};

H
hong 已提交
575 576
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
577
 public:
H
hong 已提交
578
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
579

580
  void Apply(GradOpPtr<T> grad_op) const override {
581
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
582 583 584 585
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
586 587 588
  }
};

589 590 591 592 593 594 595 596 597
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
598 599 600
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
601
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
602 603
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
604 605 606 607 608 609 610 611 612
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
613 614 615 616
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
617
  }
618 619 620 621 622 623 624 625 626 627

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
628 629
};

630 631 632 633 634 635 636 637 638 639
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
640 641
                      platform::errors::InvalidArgument(
                          "Input(X@GRAD_GRAD) shouldn't be null."));
642 643 644 645 646 647 648 649
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
650 651 652
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
653 654 655 656 657 658 659 660 661 662 663 664 665
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

666 667
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
668 669
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
670 671
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
672
                                    "DOut");
D
dzhwinter 已提交
673

Y
Yibing Liu 已提交
674 675 676
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
677
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
678

H
hong 已提交
679 680 681 682
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
683
    ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
684
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
685
                  ops::ReshapeGradInplaceInferer);
686

687 688 689 690 691 692 693
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
694
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
695 696
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
697
                  ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
698
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
699 700
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
701
                  ops::ReshapeGradInplaceInferer);
702
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
703 704
                  ops::ReshapeDoubleGradInplaceInferer,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
705

706 707 708 709
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2, float, ops::ReshapeKernel, double, ops::ReshapeKernel, int8_t,
    ops::ReshapeKernel, uint8_t, ops::ReshapeKernel, int, ops::ReshapeKernel,
    int64_t, ops::ReshapeKernel, bool, ops::ReshapeKernel,
710 711 712
    paddle::platform::bfloat16, ops::ReshapeKernel,
    paddle::platform::complex<float>, ops::ReshapeKernel,
    paddle::platform::complex<double>, ops::ReshapeKernel);
713 714 715 716 717

REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, bool,
J
Jacek Czaja 已提交
718
    ops::ReshapeGradKernel, paddle::platform::bfloat16, ops::ReshapeGradKernel,
719 720
    paddle::platform::complex<float>, ops::ReshapeGradKernel,
    paddle::platform::complex<double>, ops::ReshapeGradKernel);
721 722 723 724
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel, bool,
J
Jacek Czaja 已提交
725
    ops::ReshapeDoubleGradKernel, paddle::platform::bfloat16,
726 727
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<float>,
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<double>,
728
    ops::ReshapeDoubleGradKernel);
729

730
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
731 732
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
733 734
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
735
                                ops::ReshapeKernel);
736 737 738
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
J
joejiong 已提交
739
                                ops::ReshapeGradKernel, uint8_t,
740
                                ops::ReshapeGradKernel, plat::float16,
741

742 743 744
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
745 746
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
747
                                ops::ReshapeKernel, bool, ops::ReshapeKernel,
748 749
                                plat::complex<float>, ops::ReshapeKernel,
                                plat::complex<double>, ops::ReshapeKernel);
750 751 752 753
REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, plat::float16,
754 755
    ops::ReshapeGradKernel, bool, ops::ReshapeGradKernel, plat::complex<float>,
    ops::ReshapeGradKernel, plat::complex<double>, ops::ReshapeGradKernel);
756 757 758 759 760 761

REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel,
    plat::float16, ops::ReshapeDoubleGradKernel, bool,
762 763 764
    ops::ReshapeDoubleGradKernel, plat::complex<float>,
    ops::ReshapeDoubleGradKernel, plat::complex<double>,
    ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
765
#endif
766 767 768 769 770

#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel, plat::float16,
771
                               ops::ReshapeKernel, bool, ops::ReshapeKernel,
772 773
                               plat::complex<float>, ops::ReshapeKernel,
                               plat::complex<double>, ops::ReshapeKernel);
774 775 776 777
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel, plat::float16,
778
                               ops::ReshapeGradKernel, bool,
779 780
                               ops::ReshapeGradKernel, plat::complex<float>,
                               ops::ReshapeGradKernel, plat::complex<double>,
781
                               ops::ReshapeGradKernel);
782
#endif