reshape_op.cc 19.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15 16
#include <string>
#include <vector>
Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
18

Y
Yibing Liu 已提交
19 20 21
namespace paddle {
namespace operators {

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
    PADDLE_ENFORCE_EQ(tensor->dims(), framework::make_ddim({1}),
                      "shape of dim tensor should be [1]");
    if (platform::is_gpu_place(tensor->place())) {
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
45 46 47 48 49 50 51 52
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
53 54 55 56
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of ReshapeOp should not be null.");
Y
yuyang18 已提交
57

58 59
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
      PADDLE_ENFORCE_GT(ShapeTensor.size(), 0,
                        "The size of Input(ShapeTensor) can't be zero");
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
              "The dimension of data to copy from input must be less "
              "than the dimension of input.");
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
79

80 81 82 83 84 85 86 87 88 89 90
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
91 92
      return;
    }
93 94

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
95 96 97 98 99
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
100 101 102

    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      "The shape information must be set by Attr(shape).");
Y
yuyang18 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
116 117 118
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
119 120 121 122 123 124 125 126 127 128
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
129 130
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
Y
yuyang18 已提交
131 132 133
            "Only one input dimension of Attr(shape) can be unknown.");
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
134 135
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
Y
yuyang18 已提交
136 137 138
            "The index of dimension to copy from input shape must be less "
            "than the size of input shape.");
      } else {
139 140
        PADDLE_ENFORCE_GT(
            shape[i], 0,
Y
yuyang18 已提交
141 142 143 144 145 146 147 148 149 150
            "Each input dimension of Attr(shape) must not be negtive except "
            "one unknown dimension.");
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
151
      if (all_positive) {
Y
yuyang18 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
        PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
                          "Invalid shape is given.");
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
      PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
171 172
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
Y
yuyang18 已提交
173
  }
174 175 176 177 178 179 180 181 182 183

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
184 185
};

Y
Yibing Liu 已提交
186 187
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
188
  void Make() override {
189 190 191 192 193 194 195
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
             "(Tensor<int32>, optional). If provided, reshape according to "
             "this given shape. That is to say it has a higher priority than "
             "the shape attribute, while the shape attribute still should be "
             "set correctly to gurantee shape inference in compile time.")
        .AsDispensable();
196 197 198 199 200 201 202 203
    AddInput(
        "ShapeTensor",
        "(vector<Tensor<int32>>, optional). If provided, reshape will use this"
        "The shape of the tensor in vector MUST BE [1]"
        "it has the highest priority compare with Input(Shape) and "
        "attr(shape).")
        .AsDuplicable()
        .AsDispensable();
204
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
205
    AddAttr<std::vector<int>>(
206 207
        "shape", "(std::vector<int>) Target shape of reshape operator.")
        .SetDefault({});
K
kexinzhao 已提交
208 209
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
210

211 212
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
213

C
caoying03 已提交
214
Examples:
Y
Yibing Liu 已提交
215

C
caoying03 已提交
216 217 218 219
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

220
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
221 222 223 224 225 226
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

227
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
228 229 230 231
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
232

C
caoying03 已提交
233
Note:
Y
Yibing Liu 已提交
234

C
caoying03 已提交
235 236 237
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
238 239

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
240
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
241
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
242
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
243 244

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
M
minqiyang 已提交
245
Attr(shape) still should be set correctly to gurantee shape inference in
246
compile-time.
Y
Yibing Liu 已提交
247

Y
Yibing Liu 已提交
248 249 250 251 252 253 254 255 256 257 258 259
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

260
  void InferShape(framework::InferShapeContext *ctx) const override {
261 262 263
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
Q
Qiao Longfei 已提交
264
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
265
  }
266 267 268 269

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
Y
Yu Yang 已提交
270 271
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
272
  }
Y
Yibing Liu 已提交
273 274
};

Y
yuyang18 已提交
275 276 277 278 279
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
yuyang18 已提交
280

Y
yuyang18 已提交
281
    framework::DDim out_dims = out->dims();
Y
yuyang18 已提交
282

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
      auto new_shape = get_new_shape(list_new_shape_tensor);
      out_dims = ReshapeOp::ValidateShape(new_shape, in->dims());

    } else {
      auto *shape_tensor = ctx.HasInput("Shape")
                               ? ctx.Input<framework::LoDTensor>("Shape")
                               : nullptr;

      if (shape_tensor) {
        auto *shape_data = shape_tensor->data<int>();
        framework::Tensor cpu_shape_tensor;
        if (platform::is_gpu_place(shape_tensor->place())) {
          TensorCopySync(*shape_tensor, platform::CPUPlace(),
                         &cpu_shape_tensor);
          shape_data = cpu_shape_tensor.data<int>();
        }
        auto shape =
            std::vector<int>(shape_data, shape_data + shape_tensor->numel());
        out_dims = ReshapeOp::ValidateShape(shape, in->dims());
Y
yuyang18 已提交
306 307
      }
    }
Y
yuyang18 已提交
308

309
    out->Resize(out_dims);
310
    out->mutable_data(ctx.GetPlace(), in->type());
Y
Yiqun Liu 已提交
311 312 313
    framework::TensorCopy(
        *in, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), out);
Y
yuyang18 已提交
314 315
    out->Resize(out_dims);
  }
Y
yuyang18 已提交
316 317 318 319 320 321 322
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
323
    auto in_dims = d_x->dims();
Y
yuyang18 已提交
324

325 326
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
    framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
D
dzhwinter 已提交
327
    d_x->Resize(in_dims);
Y
yuyang18 已提交
328
  }
Y
yuyang18 已提交
329 330
};

331 332 333 334 335 336 337 338 339 340 341 342 343
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
344 345
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
                      "Output(XShape) of ReshapeOp should not be null.");
346 347 348 349 350 351 352 353
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
354 355

    ReshapeOp::InferShape(ctx);
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  }
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
  }
};

class Reshape2GradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
    grad_op->SetType("reshape2_grad");
    grad_op->SetInput("XShape", Output("XShape"));
378
    grad_op->SetInput("ShapeTensor", Input("ShapeTensor"));
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
395 396 397 398
    PADDLE_ENFORCE_EQ(ctx->HasInput("XShape"), true,
                      "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
399 400 401 402 403 404 405 406 407 408
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(
Y
Yu Yang 已提交
409
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"))->type(),
410 411
        ctx.device_context());
  }
412 413 414 415 416 417 418 419 420 421

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
422 423
};

424 425 426 427
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInToOut, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInToOut,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
D
dzhwinter 已提交
428

Y
Yibing Liu 已提交
429 430 431
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
432
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
433

Y
Yang Yang 已提交
434
REGISTER_OPERATOR(reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
D
dzhwinter 已提交
435 436 437 438
                  paddle::framework::DefaultGradOpDescMaker<true>,
                  ops::ReshapeOpInplaceInToOut);
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
                  ops::ReshapeGradInplaceInToOut);
439 440 441 442 443 444 445
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
Y
yuyang18 已提交
446

447
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
D
dzhwinter 已提交
448 449 450
                  ops::Reshape2GradMaker, ops::ReshapeOpInplaceInToOut);
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
                  ops::ReshapeGradInplaceInToOut);
451 452 453 454 455 456 457
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
458

Y
yuyang18 已提交
459
#ifdef PADDLE_WITH_CUDA
460 461
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
462 463
                                int64_t, ops::ReshapeKernel, plat::float16,
                                ops::ReshapeKernel);
464 465 466
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
467
                                ops::ReshapeGradKernel, plat::float16,
468 469 470
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
471 472
                                int64_t, ops::ReshapeKernel, plat::float16,
                                ops::ReshapeKernel);
473 474 475
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
476
                                ops::ReshapeGradKernel, plat::float16,
477
                                ops::ReshapeGradKernel);
Y
yuyang18 已提交
478
#endif