reshape_op.cc 33.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include <string>
W
wanghuancoder 已提交
16

Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
19

20 21 22 23
// only can include the headers in paddle/pten/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/manipulation.h"
W
wanghuancoder 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

Y
Yibing Liu 已提交
39 40 41
namespace paddle {
namespace operators {

42 43 44 45 46 47 48 49
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
50 51
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
52 53 54 55 56
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
57 58
    if (platform::is_gpu_place(tensor->place()) ||
        platform::is_xpu_place(tensor->place())) {
59 60 61 62 63 64 65 66 67 68 69 70
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
71 72 73 74 75 76 77 78
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
79
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
80 81
                      platform::errors::InvalidArgument(
                          "Input(X) of ReshapeOp should not be null."));
82
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
83 84
                      platform::errors::InvalidArgument(
                          "Output(Out) of ReshapeOp should not be null."));
Y
yuyang18 已提交
85

86 87
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
88
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
89 90
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
91 92 93 94 95
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
96 97 98 99 100 101 102
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
103 104 105 106 107
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
108 109 110 111 112 113 114
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
115

116 117 118 119 120 121 122 123 124 125 126
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
127 128
      return;
    }
129 130

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
131 132 133 134 135
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
136

137 138 139 140
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
154 155 156
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
157 158 159 160 161 162 163 164 165 166
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
167 168
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
169 170 171 172
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
                framework::make_ddim(shape), i));
Y
yuyang18 已提交
173 174
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
175 176
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
177 178 179 180 181 182
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
                framework::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
183
      } else {
184 185
        PADDLE_ENFORCE_GT(
            shape[i], 0,
186 187
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
188
                "be negative except one unknown dimension. "
189 190
                "But received  shape = [%s], shape[%d] = %d.",
                framework::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
191 192
      }

193 194
      // NOTE all non-zero values will be converted to True (include negative
      // value)
Y
yuyang18 已提交
195 196 197 198 199 200
      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
201
      if (all_positive) {
Y
yuyang18 已提交
202 203 204 205 206
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
207 208 209 210 211 212 213
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
214
                "'shape' is [%s], known capacity of 'shape' is %d.",
215
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
yuyang18 已提交
216 217 218 219
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
220 221 222
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
223 224 225 226 227 228 229
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
230
      }
Y
yuyang18 已提交
231
    }
232 233 234 235 236

    // support reshape with zero-input(input tensor with product(shape) == 0)
    // by now we require that if the input tensor is zero shape, the target
    // shape of output must be zero
    if (in_size == 0) {
J
JZ-LIANG 已提交
237
      PADDLE_ENFORCE_LE(
238 239 240 241 242 243 244 245 246
          capacity, in_size,
          platform::errors::InvalidArgument(
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X's shape = [%s], X's capacity = %d."
              "But the target shape of Out is [%s],  the "
              "capacity of 'Out' is %d.",
              in_dims, in_size, framework::make_ddim(shape), capacity));
    }

Y
yuyang18 已提交
247 248 249 250 251 252
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
253 254 255 256
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
257
  }
258 259 260 261 262 263 264 265 266 267

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
268 269
};

Y
Yibing Liu 已提交
270 271
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
272
  void Make() override {
273 274
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
275 276 277
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
278
             "set correctly to guarantee shape inference in compile time.")
279
        .AsDispensable();
280 281
    AddInput(
        "ShapeTensor",
282 283 284 285
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
286 287
        .AsDuplicable()
        .AsDispensable();
288
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
289
    AddAttr<std::vector<int>>(
290 291 292 293
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
294
        .SetDefault({});
295 296
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
Z
zmx 已提交
297 298
        .SetDefault(false)
        .AsExtra();
K
kexinzhao 已提交
299 300
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
301

302 303
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
304

C
caoying03 已提交
305
Examples:
Y
Yibing Liu 已提交
306

C
caoying03 已提交
307 308 309 310
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

311
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
312 313 314 315 316 317
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

318
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
319 320 321 322
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
323

C
caoying03 已提交
324
Note:
Y
Yibing Liu 已提交
325

C
caoying03 已提交
326 327 328
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
329 330

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
331
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
332
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
333
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
334 335

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
336
Attr(shape) still should be set correctly to guarantee shape inference in
337
compile-time.
Y
Yibing Liu 已提交
338

Y
Yibing Liu 已提交
339 340 341 342 343 344 345 346 347 348 349 350
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

351
  void InferShape(framework::InferShapeContext *ctx) const override {
352 353 354
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) shouldn't be null."));
355
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
356 357
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
Q
Qiao Longfei 已提交
358
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
359
  }
360 361 362 363

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
364 365 366 367
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
368
  }
Y
Yibing Liu 已提交
369 370
};

Y
yuyang18 已提交
371 372 373 374 375
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
376 377 378
    // framework::DDim out_dims = out->dims();
    auto pt_x = paddle::experimental::MakePtenDenseTensor(*in);

379 380 381 382 383 384 385
    // we can't MakePtenDenseTensor by out, because the out of reshape may have
    // multiple states, some can MakePtenDenseTensor but other's cannot:
    // 1. out tensor is not initialized
    // 2. out tensor is input (complete inplace)
    // 3. out tensor is view of input
    // We can't MakePtenDenseTensor for case 2, so we solve this case by
    // creating a temporary tensor here:
386 387 388
    pten::DenseTensorMeta meta{pten::TransToPtenDataType(in->type()),
                               in->dims(),
                               pten::TransToPtenDataLayout(in->layout())};
389 390 391 392
    auto pt_out_tmp = std::make_shared<pten::DenseTensor>(
        pten::make_intrusive<paddle::experimental::SharedStorage>(
            ctx.GetPlace()),
        std::move(meta));
393 394 395 396 397 398
    pten::DenseTensor *pt_out = nullptr;
    if (in == out) {
      pt_out = pt_x.get();
    } else {
      pt_out = pt_out_tmp.get();
    }
Y
yuyang18 已提交
399

400 401
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
402 403 404
    auto *shape_tensor = ctx.HasInput("Shape")
                             ? ctx.Input<framework::LoDTensor>("Shape")
                             : nullptr;
405 406
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
      std::vector<pten::DenseTensor> pt_vec_shape;
      for (auto &tensor : list_new_shape_tensor) {
        if (platform::is_gpu_place(tensor->place()) ||
            platform::is_xpu_place(tensor->place())) {
          framework::Tensor temp;
          TensorCopySync(*tensor, platform::CPUPlace(), &temp);
          pt_vec_shape.push_back(
              std::move(*(paddle::experimental::MakePtenDenseTensor(temp))));
        } else {
          pt_vec_shape.push_back(
              std::move(*(paddle::experimental::MakePtenDenseTensor(*tensor))));
        }
      }
      if (platform::is_cpu_place(ctx.GetPlace())) {
        auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
        pten::ReshapeFromVectorDT(dev_ctx, *pt_x.get(), pt_vec_shape, pt_out);
      }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (platform::is_gpu_place(ctx.GetPlace())) {
        auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
        pten::ReshapeFromVectorDT(dev_ctx, *pt_x.get(), pt_vec_shape, pt_out);
      }
#endif
#ifdef PADDLE_WITH_XPU
      if (platform::is_xpu_place(ctx.GetPlace())) {
        auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
        pten::ReshapeFromVectorDT(dev_ctx, *pt_x.get(), pt_vec_shape, pt_out);
      }
#endif
    } else if (shape_tensor) {
      std::unique_ptr<pten::DenseTensor> pt_shape;
      if (platform::is_gpu_place(shape_tensor->place()) ||
          platform::is_xpu_place(shape_tensor->place())) {
        framework::Tensor temp;
        TensorCopySync(*shape_tensor, platform::CPUPlace(), &temp);
        pt_shape = paddle::experimental::MakePtenDenseTensor(temp);
      } else {
        pt_shape = paddle::experimental::MakePtenDenseTensor(*shape_tensor);
      }
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
      if (platform::is_cpu_place(ctx.GetPlace())) {
        auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
        pten::ReshapeFromDT(dev_ctx, *pt_x.get(), *pt_shape.get(), pt_out);
      }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (platform::is_gpu_place(ctx.GetPlace())) {
        auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
        pten::ReshapeFromDT(dev_ctx, *pt_x.get(), *pt_shape.get(), pt_out);
      }
#endif
#ifdef PADDLE_WITH_XPU
      if (platform::is_xpu_place(ctx.GetPlace())) {
        auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
        pten::ReshapeFromDT(dev_ctx, *pt_x.get(), *pt_shape.get(), pt_out);
      }
#endif
463
    } else {
464 465 466
      auto &shape_attr = ctx.Attr<std::vector<int>>("shape");
      const std::vector<int64_t> shape_vec(shape_attr.begin(),
                                           shape_attr.end());
467 468 469 470 471 472 473 474 475 476 477 478 479 480
      if (platform::is_cpu_place(ctx.GetPlace())) {
        auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
        pten::ReshapeFromVectorVal(dev_ctx, *pt_x.get(), shape_vec, pt_out);
      }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      if (platform::is_gpu_place(ctx.GetPlace())) {
        auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
        pten::ReshapeFromVectorVal(dev_ctx, *pt_x.get(), shape_vec, pt_out);
      }
#endif
#ifdef PADDLE_WITH_XPU
      if (platform::is_xpu_place(ctx.GetPlace())) {
        auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
        pten::ReshapeFromVectorVal(dev_ctx, *pt_x.get(), shape_vec, pt_out);
Y
yuyang18 已提交
481
      }
482 483 484 485 486
#endif
    }
    // non-inplace need move all result from pt_out to out, inplace need set
    // result dims.
    if (in != out) {
487 488
      paddle::experimental::MovesSharedStorage(pt_out,
                                               static_cast<Tensor *>(out));
489 490
    } else {
      out->Resize(pt_out->dims());
Y
yuyang18 已提交
491
    }
Y
yuyang18 已提交
492
  }
Y
yuyang18 已提交
493 494 495 496 497 498 499
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
500
    auto in_dims = d_x->dims();
Y
yuyang18 已提交
501

502
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
503 504 505
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
D
dzhwinter 已提交
506
    d_x->Resize(in_dims);
Y
yuyang18 已提交
507
  }
Y
yuyang18 已提交
508 509
};

510 511 512 513 514 515 516 517 518
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");

    auto out_dims = dd_out->dims();

    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
519 520 521
    framework::TensorCopy(
        *dd_x, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dd_out);
522 523 524 525
    dd_out->Resize(out_dims);
  }
};

526 527 528 529 530 531 532 533 534 535 536 537 538
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
539
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
540 541
                      platform::errors::InvalidArgument(
                          "Output(XShape) of ReshapeOp should not be null."));
542 543 544 545 546 547 548 549
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
550 551

    ReshapeOp::InferShape(ctx);
552
  }
553 554 555 556 557

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    auto multi_inputs = ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (multi_inputs.size() > 0) {
558
      return framework::KernelSignature("reshape_mulhost", {"X", "ShapeTensor"},
Y
YuanRisheng 已提交
559
                                        {}, {"Out"});
560
    } else if (ctx.HasInput("Shape")) {
561
      return framework::KernelSignature("reshape_host", {"X", "Shape"}, {},
562
                                        {"Out"});
563
    } else {
Y
YuanRisheng 已提交
564
      return framework::KernelSignature("reshape", {"X"}, {"shape"}, {"Out"});
565 566
    }
  }
567 568 569 570 571 572 573 574 575 576
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
577 578 579 580
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
581
        .SetDefault(false);
582 583 584 585 586
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
587 588 589
  }
};

H
hong 已提交
590 591
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
592
 public:
H
hong 已提交
593
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
594

595
  void Apply(GradOpPtr<T> grad_op) const override {
596
    grad_op->SetType("reshape2_grad");
H
hong 已提交
597 598 599 600
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
601 602 603
  }
};

H
hong 已提交
604 605
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
606
 public:
H
hong 已提交
607
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
608

609
  void Apply(GradOpPtr<T> grad_op) const override {
610
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
611 612 613 614
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
615 616 617
  }
};

618 619 620 621 622 623 624 625 626
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
627 628 629
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
630
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
631 632
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
633 634 635 636 637 638 639 640 641
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
642 643 644 645
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
646
  }
647 648 649 650 651 652 653 654 655 656

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
657 658
};

659 660 661 662 663 664 665 666 667 668
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
669 670
                      platform::errors::InvalidArgument(
                          "Input(X@GRAD_GRAD) shouldn't be null."));
671 672 673 674 675 676 677 678
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
679 680 681
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
682 683 684 685 686 687 688 689 690 691 692 693 694
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

695 696
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
697 698
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
699 700
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
701
                                    "DOut");
D
dzhwinter 已提交
702

Y
Yibing Liu 已提交
703 704 705
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
706
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
707

H
hong 已提交
708 709 710 711
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
712
    ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
713
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
714
                  ops::ReshapeGradInplaceInferer);
715

716 717 718 719 720 721 722
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
723
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
724 725
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
726
                  ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
727
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
728 729
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
730
                  ops::ReshapeGradInplaceInferer);
731
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
732 733
                  ops::ReshapeDoubleGradInplaceInferer,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
734

735 736 737 738
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2, float, ops::ReshapeKernel, double, ops::ReshapeKernel, int8_t,
    ops::ReshapeKernel, uint8_t, ops::ReshapeKernel, int, ops::ReshapeKernel,
    int64_t, ops::ReshapeKernel, bool, ops::ReshapeKernel,
739 740 741
    paddle::platform::bfloat16, ops::ReshapeKernel,
    paddle::platform::complex<float>, ops::ReshapeKernel,
    paddle::platform::complex<double>, ops::ReshapeKernel);
742 743 744 745 746

REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, bool,
J
Jacek Czaja 已提交
747
    ops::ReshapeGradKernel, paddle::platform::bfloat16, ops::ReshapeGradKernel,
748 749
    paddle::platform::complex<float>, ops::ReshapeGradKernel,
    paddle::platform::complex<double>, ops::ReshapeGradKernel);
750 751 752 753
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel, bool,
J
Jacek Czaja 已提交
754
    ops::ReshapeDoubleGradKernel, paddle::platform::bfloat16,
755 756
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<float>,
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<double>,
757
    ops::ReshapeDoubleGradKernel);
758

759
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
760 761
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
762 763
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
764
                                ops::ReshapeKernel);
765 766 767
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
J
joejiong 已提交
768
                                ops::ReshapeGradKernel, uint8_t,
769
                                ops::ReshapeGradKernel, plat::float16,
770

771 772 773
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
774 775
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
776
                                ops::ReshapeKernel, bool, ops::ReshapeKernel,
777 778
                                plat::complex<float>, ops::ReshapeKernel,
                                plat::complex<double>, ops::ReshapeKernel);
779 780 781 782
REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, plat::float16,
783 784
    ops::ReshapeGradKernel, bool, ops::ReshapeGradKernel, plat::complex<float>,
    ops::ReshapeGradKernel, plat::complex<double>, ops::ReshapeGradKernel);
785 786 787 788 789 790

REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel,
    plat::float16, ops::ReshapeDoubleGradKernel, bool,
791 792 793
    ops::ReshapeDoubleGradKernel, plat::complex<float>,
    ops::ReshapeDoubleGradKernel, plat::complex<double>,
    ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
794
#endif
795 796 797 798 799

#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel, plat::float16,
800
                               ops::ReshapeKernel, bool, ops::ReshapeKernel,
801 802
                               plat::complex<float>, ops::ReshapeKernel,
                               plat::complex<double>, ops::ReshapeKernel);
803 804 805 806
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel, plat::float16,
807
                               ops::ReshapeGradKernel, bool,
808 809
                               ops::ReshapeGradKernel, plat::complex<float>,
                               ops::ReshapeGradKernel, plat::complex<double>,
810
                               ops::ReshapeGradKernel);
811
#endif