reshape_op.cc 29.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include <string>
W
wanghuancoder 已提交
16

Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
18

W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

Y
Yibing Liu 已提交
34 35 36
namespace paddle {
namespace operators {

37 38 39 40 41 42 43 44
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
45 46
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
47 48 49 50 51
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
52 53
    if (platform::is_gpu_place(tensor->place()) ||
        platform::is_xpu_place(tensor->place())) {
54 55 56 57 58 59 60 61 62 63 64 65
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
66 67 68 69 70 71 72 73
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
74
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
75 76
                      platform::errors::InvalidArgument(
                          "Input(X) of ReshapeOp should not be null."));
77
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
78 79
                      platform::errors::InvalidArgument(
                          "Output(Out) of ReshapeOp should not be null."));
Y
yuyang18 已提交
80

81 82
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
83
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
84 85
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
86 87 88 89 90
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
91 92 93 94 95 96 97
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
98 99 100 101 102
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
103 104 105 106 107 108 109
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
110

111 112 113 114 115 116 117 118 119 120 121
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
122 123
      return;
    }
124 125

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
126 127 128 129 130
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
131

132 133 134 135
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
149 150 151
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
152 153 154 155 156 157 158 159 160 161
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
162 163
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
164 165 166 167
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
                framework::make_ddim(shape), i));
Y
yuyang18 已提交
168 169
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
170 171
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
172 173 174 175 176 177
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
                framework::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
178
      } else {
179 180
        PADDLE_ENFORCE_GT(
            shape[i], 0,
181 182
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
183
                "be negative except one unknown dimension. "
184 185
                "But received  shape = [%s], shape[%d] = %d.",
                framework::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
186 187 188 189 190 191 192 193
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
194
      if (all_positive) {
Y
yuyang18 已提交
195 196 197 198 199
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
200 201 202 203 204 205 206
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
207
                "'shape' is [%s], known capacity of 'shape' is %d.",
208
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
yuyang18 已提交
209 210 211 212
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
213 214 215
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
216 217 218 219 220 221 222
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
223
      }
Y
yuyang18 已提交
224 225 226 227 228 229 230
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
231 232 233 234 235 236 237 238 239 240 241
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
242
  }
243 244 245 246 247 248 249 250 251 252

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
253 254
};

Y
Yibing Liu 已提交
255 256
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
257
  void Make() override {
258 259
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
260 261 262
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
263
             "set correctly to guarantee shape inference in compile time.")
264
        .AsDispensable();
265 266
    AddInput(
        "ShapeTensor",
267 268 269 270
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
271 272
        .AsDuplicable()
        .AsDispensable();
273
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
274
    AddAttr<std::vector<int>>(
275 276 277 278
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
279
        .SetDefault({});
280 281 282
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
kexinzhao 已提交
283 284
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
285

286 287
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
288

C
caoying03 已提交
289
Examples:
Y
Yibing Liu 已提交
290

C
caoying03 已提交
291 292 293 294
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

295
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
296 297 298 299 300 301
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

302
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
303 304 305 306
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
307

C
caoying03 已提交
308
Note:
Y
Yibing Liu 已提交
309

C
caoying03 已提交
310 311 312
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
313 314

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
315
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
316
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
317
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
318 319

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
320
Attr(shape) still should be set correctly to guarantee shape inference in
321
compile-time.
Y
Yibing Liu 已提交
322

Y
Yibing Liu 已提交
323 324 325 326 327 328 329 330 331 332 333 334
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

335
  void InferShape(framework::InferShapeContext *ctx) const override {
336 337 338
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) shouldn't be null."));
339
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
340 341
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
Q
Qiao Longfei 已提交
342
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
343
  }
344 345 346 347

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
348 349 350 351 352 353 354 355 356 357 358
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
359
  }
Y
Yibing Liu 已提交
360 361
};

Y
yuyang18 已提交
362 363 364 365 366
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
yuyang18 已提交
367

Y
yuyang18 已提交
368
    framework::DDim out_dims = out->dims();
Y
yuyang18 已提交
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
      auto new_shape = get_new_shape(list_new_shape_tensor);
      out_dims = ReshapeOp::ValidateShape(new_shape, in->dims());

    } else {
      auto *shape_tensor = ctx.HasInput("Shape")
                               ? ctx.Input<framework::LoDTensor>("Shape")
                               : nullptr;

      if (shape_tensor) {
        auto *shape_data = shape_tensor->data<int>();
        framework::Tensor cpu_shape_tensor;
385 386
        if (platform::is_gpu_place(shape_tensor->place()) ||
            platform::is_xpu_place(shape_tensor->place())) {
387 388 389 390 391 392 393
          TensorCopySync(*shape_tensor, platform::CPUPlace(),
                         &cpu_shape_tensor);
          shape_data = cpu_shape_tensor.data<int>();
        }
        auto shape =
            std::vector<int>(shape_data, shape_data + shape_tensor->numel());
        out_dims = ReshapeOp::ValidateShape(shape, in->dims());
Y
yuyang18 已提交
394 395
      }
    }
Y
yuyang18 已提交
396

397
    out->Resize(out_dims);
398
    out->mutable_data(ctx.GetPlace(), in->type());
399 400 401
    framework::TensorCopy(
        *in, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), out);
Y
yuyang18 已提交
402 403
    out->Resize(out_dims);
  }
Y
yuyang18 已提交
404 405 406 407 408 409 410
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
411
    auto in_dims = d_x->dims();
Y
yuyang18 已提交
412

413
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
414 415 416
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
D
dzhwinter 已提交
417
    d_x->Resize(in_dims);
Y
yuyang18 已提交
418
  }
Y
yuyang18 已提交
419 420
};

421 422 423 424 425 426 427 428 429
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");

    auto out_dims = dd_out->dims();

    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
430 431 432
    framework::TensorCopy(
        *dd_x, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dd_out);
433 434 435 436
    dd_out->Resize(out_dims);
  }
};

437 438 439 440 441 442 443 444 445 446 447 448 449
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
450
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
451 452
                      platform::errors::InvalidArgument(
                          "Output(XShape) of ReshapeOp should not be null."));
453 454 455 456 457 458 459 460
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
461 462

    ReshapeOp::InferShape(ctx);
463 464 465 466 467 468 469 470 471 472 473
  }
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
474 475 476 477
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
478
        .SetDefault(false);
479 480 481 482 483
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
484 485 486
  }
};

H
hong 已提交
487 488
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
489
 public:
H
hong 已提交
490
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
491

492
  void Apply(GradOpPtr<T> grad_op) const override {
493
    grad_op->SetType("reshape2_grad");
H
hong 已提交
494 495 496 497
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
498 499 500
  }
};

H
hong 已提交
501 502
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
503
 public:
H
hong 已提交
504
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
505

506
  void Apply(GradOpPtr<T> grad_op) const override {
507
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
508 509 510 511
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
512 513 514
  }
};

515 516 517 518 519 520 521 522 523
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
524 525 526
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
527
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
528 529
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
530 531 532 533 534 535 536 537 538
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
539 540 541 542 543 544 545 546 547 548 549
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
550
  }
551 552 553 554 555 556 557 558 559 560

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
561 562
};

563 564 565 566 567 568 569 570 571 572
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
573 574
                      platform::errors::InvalidArgument(
                          "Input(X@GRAD_GRAD) shouldn't be null."));
575 576 577 578 579 580 581 582
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
583 584 585
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
586 587 588 589 590 591 592 593 594 595 596 597 598
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

599 600
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
601 602
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
603 604
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
605
                                    "DOut");
D
dzhwinter 已提交
606

Y
Yibing Liu 已提交
607 608 609
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
610
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
611

H
hong 已提交
612 613 614 615
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
616
    ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
617
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
618
                  ops::ReshapeGradInplaceInferer);
619

620 621 622 623 624 625 626
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
627
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
628 629
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
630
                  ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
631
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
632 633
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
634
                  ops::ReshapeGradInplaceInferer);
635
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
636 637
                  ops::ReshapeDoubleGradInplaceInferer,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
638

639 640 641 642
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2, float, ops::ReshapeKernel, double, ops::ReshapeKernel, int8_t,
    ops::ReshapeKernel, uint8_t, ops::ReshapeKernel, int, ops::ReshapeKernel,
    int64_t, ops::ReshapeKernel, bool, ops::ReshapeKernel,
643 644 645
    paddle::platform::bfloat16, ops::ReshapeKernel,
    paddle::platform::complex<float>, ops::ReshapeKernel,
    paddle::platform::complex<double>, ops::ReshapeKernel);
646 647 648 649 650

REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, bool,
J
Jacek Czaja 已提交
651
    ops::ReshapeGradKernel, paddle::platform::bfloat16, ops::ReshapeGradKernel,
652 653
    paddle::platform::complex<float>, ops::ReshapeGradKernel,
    paddle::platform::complex<double>, ops::ReshapeGradKernel);
654 655 656 657
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel, bool,
J
Jacek Czaja 已提交
658
    ops::ReshapeDoubleGradKernel, paddle::platform::bfloat16,
659 660
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<float>,
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<double>,
661
    ops::ReshapeDoubleGradKernel);
662

663
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
664 665
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
666 667
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
668
                                ops::ReshapeKernel);
669 670 671
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
J
joejiong 已提交
672
                                ops::ReshapeGradKernel, uint8_t,
673
                                ops::ReshapeGradKernel, plat::float16,
674

675 676 677
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
678 679
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
680
                                ops::ReshapeKernel, bool, ops::ReshapeKernel,
681 682
                                plat::complex<float>, ops::ReshapeKernel,
                                plat::complex<double>, ops::ReshapeKernel);
683 684 685 686
REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, plat::float16,
687 688
    ops::ReshapeGradKernel, bool, ops::ReshapeGradKernel, plat::complex<float>,
    ops::ReshapeGradKernel, plat::complex<double>, ops::ReshapeGradKernel);
689 690 691 692 693 694

REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel,
    plat::float16, ops::ReshapeDoubleGradKernel, bool,
695 696 697
    ops::ReshapeDoubleGradKernel, plat::complex<float>,
    ops::ReshapeDoubleGradKernel, plat::complex<double>,
    ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
698
#endif
699 700 701 702 703

#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel, plat::float16,
704
                               ops::ReshapeKernel, bool, ops::ReshapeKernel,
705 706
                               plat::complex<float>, ops::ReshapeKernel,
                               plat::complex<double>, ops::ReshapeKernel);
707 708 709 710
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel, plat::float16,
711
                               ops::ReshapeGradKernel, bool,
712 713
                               ops::ReshapeGradKernel, plat::complex<float>,
                               ops::ReshapeGradKernel, plat::complex<double>,
714
                               ops::ReshapeGradKernel);
715
#endif