reshape_op.cc 29.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include <string>
W
wanghuancoder 已提交
16

Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
18

W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

Y
Yibing Liu 已提交
34 35 36
namespace paddle {
namespace operators {

37 38 39 40 41 42 43 44
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
45 46
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
47 48 49 50 51
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
52 53
    if (platform::is_gpu_place(tensor->place()) ||
        platform::is_xpu_place(tensor->place())) {
54 55 56 57 58 59 60 61 62 63 64 65
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
66 67 68 69 70 71 72 73
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
74
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
75 76
                      platform::errors::InvalidArgument(
                          "Input(X) of ReshapeOp should not be null."));
77
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
78 79
                      platform::errors::InvalidArgument(
                          "Output(Out) of ReshapeOp should not be null."));
Y
yuyang18 已提交
80

81 82
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
83
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
84 85
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
86 87 88 89 90
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
91 92 93 94 95 96 97
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
98 99 100 101 102
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
103 104 105 106 107 108 109
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
110

111 112 113 114 115 116 117 118 119 120 121
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
122 123
      return;
    }
124 125

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
126 127 128 129 130
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
131

132 133 134 135
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
149 150 151
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
152 153 154 155 156 157 158 159 160 161
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
162 163
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
164 165 166 167
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
                framework::make_ddim(shape), i));
Y
yuyang18 已提交
168 169
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
170 171
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
172 173 174 175 176 177
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
                framework::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
178
      } else {
179 180
        PADDLE_ENFORCE_GT(
            shape[i], 0,
181 182
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
183
                "be negative except one unknown dimension. "
184 185
                "But received  shape = [%s], shape[%d] = %d.",
                framework::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
186 187 188 189 190 191 192 193
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
194
      if (all_positive) {
Y
yuyang18 已提交
195 196 197 198 199
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
200 201 202 203 204 205 206
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
207
                "'shape' is [%s], known capacity of 'shape' is %d.",
208
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
yuyang18 已提交
209 210 211 212
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
213 214 215
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
216 217 218 219 220 221 222
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
223
      }
Y
yuyang18 已提交
224 225 226 227 228 229 230
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
231 232 233 234 235 236 237 238 239 240 241
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
242
  }
243 244 245 246 247 248 249 250 251 252

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
253 254
};

Y
Yibing Liu 已提交
255 256
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
257
  void Make() override {
258 259
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
260 261 262
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
263
             "set correctly to guarantee shape inference in compile time.")
264
        .AsDispensable();
265 266
    AddInput(
        "ShapeTensor",
267 268 269 270
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
271 272
        .AsDuplicable()
        .AsDispensable();
273
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
274
    AddAttr<std::vector<int>>(
275 276 277 278
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
279
        .SetDefault({});
280 281
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
Z
zmx 已提交
282 283
        .SetDefault(false)
        .AsExtra();
K
kexinzhao 已提交
284 285
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
286

287 288
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
289

C
caoying03 已提交
290
Examples:
Y
Yibing Liu 已提交
291

C
caoying03 已提交
292 293 294 295
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

296
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
297 298 299 300 301 302
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

303
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
304 305 306 307
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
308

C
caoying03 已提交
309
Note:
Y
Yibing Liu 已提交
310

C
caoying03 已提交
311 312 313
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
314 315

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
316
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
317
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
318
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
319 320

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
321
Attr(shape) still should be set correctly to guarantee shape inference in
322
compile-time.
Y
Yibing Liu 已提交
323

Y
Yibing Liu 已提交
324 325 326 327 328 329 330 331 332 333 334 335
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

336
  void InferShape(framework::InferShapeContext *ctx) const override {
337 338 339
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) shouldn't be null."));
340
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
341 342
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
Q
Qiao Longfei 已提交
343
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
344
  }
345 346 347 348

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
349 350 351 352 353 354 355 356 357 358 359
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
360
  }
Y
Yibing Liu 已提交
361 362
};

Y
yuyang18 已提交
363 364 365 366 367
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
yuyang18 已提交
368

Y
yuyang18 已提交
369
    framework::DDim out_dims = out->dims();
Y
yuyang18 已提交
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
      auto new_shape = get_new_shape(list_new_shape_tensor);
      out_dims = ReshapeOp::ValidateShape(new_shape, in->dims());

    } else {
      auto *shape_tensor = ctx.HasInput("Shape")
                               ? ctx.Input<framework::LoDTensor>("Shape")
                               : nullptr;

      if (shape_tensor) {
        auto *shape_data = shape_tensor->data<int>();
        framework::Tensor cpu_shape_tensor;
386 387
        if (platform::is_gpu_place(shape_tensor->place()) ||
            platform::is_xpu_place(shape_tensor->place())) {
388 389 390 391 392 393 394
          TensorCopySync(*shape_tensor, platform::CPUPlace(),
                         &cpu_shape_tensor);
          shape_data = cpu_shape_tensor.data<int>();
        }
        auto shape =
            std::vector<int>(shape_data, shape_data + shape_tensor->numel());
        out_dims = ReshapeOp::ValidateShape(shape, in->dims());
Y
yuyang18 已提交
395 396
      }
    }
Y
yuyang18 已提交
397

398
    out->Resize(out_dims);
399
    out->mutable_data(ctx.GetPlace(), in->type());
400 401 402
    framework::TensorCopy(
        *in, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), out);
Y
yuyang18 已提交
403 404
    out->Resize(out_dims);
  }
Y
yuyang18 已提交
405 406 407 408 409 410 411
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
412
    auto in_dims = d_x->dims();
Y
yuyang18 已提交
413

414
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
415 416 417
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
D
dzhwinter 已提交
418
    d_x->Resize(in_dims);
Y
yuyang18 已提交
419
  }
Y
yuyang18 已提交
420 421
};

422 423 424 425 426 427 428 429 430
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");

    auto out_dims = dd_out->dims();

    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
431 432 433
    framework::TensorCopy(
        *dd_x, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), dd_out);
434 435 436 437
    dd_out->Resize(out_dims);
  }
};

438 439 440 441 442 443 444 445 446 447 448 449 450
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
451
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
452 453
                      platform::errors::InvalidArgument(
                          "Output(XShape) of ReshapeOp should not be null."));
454 455 456 457 458 459 460 461
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
462 463

    ReshapeOp::InferShape(ctx);
464 465 466 467 468 469 470 471 472 473 474
  }
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
475 476 477 478
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
479
        .SetDefault(false);
480 481 482 483 484
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
485 486 487
  }
};

H
hong 已提交
488 489
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
490
 public:
H
hong 已提交
491
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
492

493
  void Apply(GradOpPtr<T> grad_op) const override {
494
    grad_op->SetType("reshape2_grad");
H
hong 已提交
495 496 497 498
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
499 500 501
  }
};

H
hong 已提交
502 503
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
504
 public:
H
hong 已提交
505
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
506

507
  void Apply(GradOpPtr<T> grad_op) const override {
508
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
509 510 511 512
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
513 514 515
  }
};

516 517 518 519 520 521 522 523 524
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
525 526 527
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
528
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
529 530
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
531 532 533 534 535 536 537 538 539
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
540 541 542 543 544 545 546 547 548 549 550
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
551
  }
552 553 554 555 556 557 558 559 560 561

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
562 563
};

564 565 566 567 568 569 570 571 572 573
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
574 575
                      platform::errors::InvalidArgument(
                          "Input(X@GRAD_GRAD) shouldn't be null."));
576 577 578 579 580 581 582 583
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
584 585 586
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
587 588 589 590 591 592 593 594 595 596 597 598 599
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

600 601
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
602 603
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
604 605
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
606
                                    "DOut");
D
dzhwinter 已提交
607

Y
Yibing Liu 已提交
608 609 610
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
611
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
612

H
hong 已提交
613 614 615 616
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
617
    ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
618
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
619
                  ops::ReshapeGradInplaceInferer);
620

621 622 623 624 625 626 627
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
628
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
629 630
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
631
                  ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
632
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
633 634
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
635
                  ops::ReshapeGradInplaceInferer);
636
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
637 638
                  ops::ReshapeDoubleGradInplaceInferer,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
639

640 641 642 643
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2, float, ops::ReshapeKernel, double, ops::ReshapeKernel, int8_t,
    ops::ReshapeKernel, uint8_t, ops::ReshapeKernel, int, ops::ReshapeKernel,
    int64_t, ops::ReshapeKernel, bool, ops::ReshapeKernel,
644 645 646
    paddle::platform::bfloat16, ops::ReshapeKernel,
    paddle::platform::complex<float>, ops::ReshapeKernel,
    paddle::platform::complex<double>, ops::ReshapeKernel);
647 648 649 650 651

REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, bool,
J
Jacek Czaja 已提交
652
    ops::ReshapeGradKernel, paddle::platform::bfloat16, ops::ReshapeGradKernel,
653 654
    paddle::platform::complex<float>, ops::ReshapeGradKernel,
    paddle::platform::complex<double>, ops::ReshapeGradKernel);
655 656 657 658
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel, bool,
J
Jacek Czaja 已提交
659
    ops::ReshapeDoubleGradKernel, paddle::platform::bfloat16,
660 661
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<float>,
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<double>,
662
    ops::ReshapeDoubleGradKernel);
663

664
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
665 666
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
667 668
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
669
                                ops::ReshapeKernel);
670 671 672
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
J
joejiong 已提交
673
                                ops::ReshapeGradKernel, uint8_t,
674
                                ops::ReshapeGradKernel, plat::float16,
675

676 677 678
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
679 680
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
681
                                ops::ReshapeKernel, bool, ops::ReshapeKernel,
682 683
                                plat::complex<float>, ops::ReshapeKernel,
                                plat::complex<double>, ops::ReshapeKernel);
684 685 686 687
REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, plat::float16,
688 689
    ops::ReshapeGradKernel, bool, ops::ReshapeGradKernel, plat::complex<float>,
    ops::ReshapeGradKernel, plat::complex<double>, ops::ReshapeGradKernel);
690 691 692 693 694 695

REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel,
    plat::float16, ops::ReshapeDoubleGradKernel, bool,
696 697 698
    ops::ReshapeDoubleGradKernel, plat::complex<float>,
    ops::ReshapeDoubleGradKernel, plat::complex<double>,
    ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
699
#endif
700 701 702 703 704

#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel, plat::float16,
705
                               ops::ReshapeKernel, bool, ops::ReshapeKernel,
706 707
                               plat::complex<float>, ops::ReshapeKernel,
                               plat::complex<double>, ops::ReshapeKernel);
708 709 710 711
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel, plat::float16,
712
                               ops::ReshapeGradKernel, bool,
713 714
                               ops::ReshapeGradKernel, plat::complex<float>,
                               ops::ReshapeGradKernel, plat::complex<double>,
715
                               ops::ReshapeGradKernel);
716
#endif