unsqueeze_op.cc 16.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/unsqueeze_op.h"
16

17
#include <memory>
18 19
#include <string>
#include <vector>
20

21
#include "paddle/fluid/framework/infershape_utils.h"
22
#include "paddle/fluid/framework/op_registry.h"
23
#include "paddle/phi/infermeta/unary.h"
24 25 26 27

namespace paddle {
namespace operators {

28
class UnsqueezeOp : public framework::OperatorWithKernel {
29
 public:
30 31 32 33
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
34 35 36
                      platform::errors::InvalidArgument(
                          "Input(X) of "
                          "Unsqueeze operator should not be null."));
37
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
38 39 40
                      platform::errors::InvalidArgument(
                          "Output(Out) of "
                          "Unsqueeze operator should not be null."));
41

42 43
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    const auto &x_dims = ctx->GetInputDim("X");
44
    // Validity Check: input tensor dims (<6).
45
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
46 47 48 49
                      platform::errors::InvalidArgument(
                          "Invalid "
                          "dimensions, the rank of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)"));
50 51 52 53 54 55 56 57 58 59 60 61
    if (!axes.empty()) {
      auto out_dims = GetOutputShape(axes, x_dims);
      ctx->SetOutputDim("Out", out_dims);
      if (x_dims[0] == out_dims[0]) {
        // Only pass LoD when the first dimension of output and Input(X)
        // are the same.
        ctx->ShareLoD("X", "Out");
      }
    } else if (ctx->HasInputs("AxesTensorList")) {
      auto AxesTensorList = ctx->Inputs("AxesTensorList");
      int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
      PADDLE_ENFORCE_LE(output_size, 6,
62 63
                        platform::errors::InvalidArgument(
                            "The output tensor's rank should be less than 6."));
64
      std::vector<int> vec_out_dims(output_size, -1);
65
      ctx->SetOutputDim("Out", phi::make_ddim(vec_out_dims));
66 67
    } else if (ctx->HasInput("AxesTensor")) {
      auto axes_dims = ctx->GetInputDim("AxesTensor");
68 69 70 71 72 73 74 75 76 77 78 79 80
      PADDLE_ENFORCE_EQ(axes_dims.size(), 1,
                        platform::errors::InvalidArgument(
                            "Input(AxesTensor)'s dimension of "
                            "Op(unsqueeze) must be 1. "
                            "But received AxesTensor's shape = [%s], "
                            "AxesTensor's dimension = %d.",
                            axes_dims, axes_dims.size()));
      PADDLE_ENFORCE_GE(
          axes_dims[0], 0,
          platform::errors::InvalidArgument(
              "Input(AxesTensor)'s shape must be known. But received "
              "AxesTensor's shape = [%s]",
              axes_dims));
81 82
      int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
      PADDLE_ENFORCE_LE(output_size, 6,
83 84
                        platform::errors::InvalidArgument(
                            "The output tensor's rank should be less than 6."));
85
      std::vector<int> vec_out_dims(output_size, -1);
86
      ctx->SetOutputDim("Out", phi::make_ddim(vec_out_dims));
87
    }
88 89
  }

90
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
91
                                        const framework::DDim &in_dims) {
92 93
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
    int cur_output_size = in_dims.size();
94 95 96
    std::vector<int64_t> output_shape(output_size, 0);

    // Validity Check: rank range.
97
    PADDLE_ENFORCE_LE(output_size, 6,
98 99
                      platform::errors::InvalidArgument(
                          "The output tensor's rank should be less than 6."));
100 101

    for (int axis : unsqz_dims) {
102
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
103
      // Vaildity Check: the axis bound
104 105 106 107 108 109 110
      PADDLE_ENFORCE_GE(cur, 0, platform::errors::InvalidArgument(
                                    "The insert dimension value should "
                                    "not be less than 0"));
      PADDLE_ENFORCE_LE(cur, cur_output_size,
                        platform::errors::InvalidArgument(
                            "The insert dimension value shoud not be larger "
                            "than the dimension size of input tensor"));
111 112 113 114 115 116 117 118 119
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }
      output_shape[cur] = 1;
120
      // Add the output size.
121
      cur_output_size++;
122 123
    }

124
    // Make output shape
125 126
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
127 128 129 130
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

131
    return phi::make_ddim(output_shape);
132
  }
133 134 135 136

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
137 138 139 140
    return framework::OpKernelType(
        framework::TransToProtoVarType(
            ctx.Input<framework::LoDTensor>("X")->type()),
        ctx.device_context());
141 142 143 144 145 146 147 148 149 150 151
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
152 153 154 155 156 157
};

class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
158 159 160 161 162 163 164 165 166 167 168
    AddInput("AxesTensor",
             "(Tensor<int32>, optional). The dimensions to be inserted. "
             "If it exists, it will replace Attr(axes).")
        .AsDispensable();
    AddInput(
        "AxesTensorList",
        "(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
        "If it exists, it will replace Attr(axes)."
        "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
169 170
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
171
                              "(std::vector<int>). List of integers,"
172
                              " indicating the dimensions to be inserted")
173
        .SetDefault({})
174 175
        .AddCustomChecker([](const std::vector<int> &axes) {
          // Validity Check: axes dims (<6).
176
          PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
177 178 179 180
                            platform::errors::InvalidArgument(
                                "Invalid "
                                "dimensions, dynamic dimensions should be "
                                "within [1, 6] dimensions (Eigen limit)."));
T
tianshuo78520a 已提交
181
          // Validity Check: the range of unsqueeze axis.
182
          for (int axis : axes) {
183
            PADDLE_ENFORCE_LT(axis, 6,
184 185 186 187
                              platform::errors::InvalidArgument(
                                  "Invalid "
                                  "dimensions, input axis should be"
                                  "within [1, 6] dimensions (Eigen limit)."));
188 189
          }
        });
190
    AddComment(R"DOC(
191 192
    Unsqueeze Operator.

193 194 195 196 197 198
    Insert single-dimensional entries to the shape of a tensor.
    Takes one required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
199
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
200 201 202 203
    )DOC");
  }
};

204
class UnsqueezeGradOp : public framework::OperatorWithKernel {
205
 public:
206 207 208
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
209
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
210
    ctx->ShareLoD("X", framework::GradVarName("X"));
211
  }
212 213 214 215 216 217 218 219 220 221 222 223 224 225

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class UnsqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

226
  void Apply(GradOpPtr<T> grad_op) const override {
227 228 229 230 231 232
    grad_op->SetType("unsqueeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
233
};
234

235 236 237 238 239 240 241 242 243 244 245 246 247
template <typename T>
class UnsqueezeDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("unsqueeze");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

248 249 250 251 252
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
253
class Unsqueeze2Op : public UnsqueezeOp {
254
 public:
255
  using UnsqueezeOp::UnsqueezeOp;
256 257 258 259 260 261 262 263 264
};

class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
 public:
  void Make() override {
    UnsqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in UnsqueezeGradOp.")
265 266
        .AsIntermediate()
        .AsExtra();
267 268 269
  }
};

H
hong 已提交
270 271
template <typename T>
class Unsqueeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
272
 public:
H
hong 已提交
273
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
274

275
  void Apply(GradOpPtr<T> grad_op) const override {
276
    grad_op->SetType("unsqueeze2_grad");
H
hong 已提交
277 278 279 280
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
281 282 283
  }
};

284
class Unsqueeze2GradOp : public framework::OperatorWithKernel {
285
 public:
286 287
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *context) const override {
288 289 290
    PADDLE_ENFORCE_EQ(
        context->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
291
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
292 293
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
294
    auto xshape_dims = context->GetInputDim("XShape");
295
    auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
296 297 298 299
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

300 301 302
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
303 304 305
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
306 307
  }
};
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322
template <typename T>
class Unsqueeze2DoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("unsqueeze2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

323 324 325 326
DECLARE_INPLACE_OP_INFERER(UnsqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(UnsqueezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
327
DECLARE_NO_NEED_BUFFER_VARS_INFERER(UnsqueezeGradOpNoNeedBufferVarInferer, "X");
328 329 330
}  // namespace operators
}  // namespace paddle

331 332 333
DECLARE_INFER_SHAPE_FUNCTOR(unsqueeze2, Unsqueeze2InferShapeFunctor,
                            PD_INFER_META(phi::UnsqueezeInferMeta));

334
namespace ops = paddle::operators;
335 336 337
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
                  ops::UnsqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnsqueezeGradOpMaker<paddle::imperative::OpBase>);
338

339
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
340 341
                  ops::UnsqueezeDoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnsqueezeDoubleGradOpMaker<paddle::imperative::OpBase>,
342
                  ops::UnsqueezeGradOpNoNeedBufferVarInferer);
343 344

REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
H
hong 已提交
345 346
                  ops::Unsqueeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2GradOpMaker<paddle::imperative::OpBase>,
347 348
                  Unsqueeze2InferShapeFunctor, ops::UnsqueezeInplaceInferer);

349
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
350 351
                  ops::Unsqueeze2DoubleGradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2DoubleGradOpMaker<paddle::imperative::OpBase>,
352
                  ops::UnsqueezeGradInplaceInferer);
353 354 355 356

REGISTER_OP_CPU_KERNEL(
    unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
357
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
358
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
359
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int16_t>,
360
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, uint8_t>,
361
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
362 363 364 365
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::complex<float>>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
366 367 368
                         paddle::platform::complex<double>>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext,
                         paddle::platform::bfloat16>);
369 370 371 372
REGISTER_OP_CPU_KERNEL(
    unsqueeze_grad,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
373
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, bool>,
374
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
375
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int16_t>,
376
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
377
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
378 379 380 381
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext,
                             paddle::platform::complex<float>>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext,
382 383 384
                             paddle::platform::complex<double>>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext,
                             paddle::platform::bfloat16>);