unsqueeze_op.cc 12.7 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/operators/unsqueeze_op.h"
#include <memory>
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/op_registry.h"
20 21 22 23

namespace paddle {
namespace operators {

24
class UnsqueezeOp : public framework::OperatorWithKernel {
25
 public:
26 27 28 29 30 31 32
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of Unsqueeze operator should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of Unsqueeze operator should not be null.");
33

34 35
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    const auto &x_dims = ctx->GetInputDim("X");
36
    // Validity Check: input tensor dims (<6).
37 38 39
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
                      "Invalid dimensions, the rank of Input(X) "
                      "should be in the range of [1, 6] (Eigen limit)");
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    if (!axes.empty()) {
      auto out_dims = GetOutputShape(axes, x_dims);
      ctx->SetOutputDim("Out", out_dims);
      if (x_dims[0] == out_dims[0]) {
        // Only pass LoD when the first dimension of output and Input(X)
        // are the same.
        ctx->ShareLoD("X", "Out");
      }
    } else if (ctx->HasInputs("AxesTensorList")) {
      auto AxesTensorList = ctx->Inputs("AxesTensorList");
      int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
      PADDLE_ENFORCE_LE(output_size, 6,
                        "The output tensor's rank should be less than 6.");
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
    } else if (ctx->HasInput("AxesTensor")) {
      auto axes_dims = ctx->GetInputDim("AxesTensor");
      PADDLE_ENFORCE_EQ(
          axes_dims.size(), 1,
          "Input(AxesTensor)'s dimension of Op(unsqueeze) must be 1. "
          "But received AxesTensor's shape = [%s], "
          "AxesTensor's dimension = %d.",
          axes_dims, axes_dims.size());
      PADDLE_ENFORCE_GE(axes_dims[0], 0,
                        "Input(AxesTensor)'s shape must be known. But received "
                        "AxesTensor's shape = [%s]",
                        axes_dims);
      int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
      PADDLE_ENFORCE_LE(output_size, 6,
                        "The output tensor's rank should be less than 6.");
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
72
    }
73 74
  }

75
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
76
                                        const framework::DDim &in_dims) {
77 78
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
    int cur_output_size = in_dims.size();
79 80 81
    std::vector<int64_t> output_shape(output_size, 0);

    // Validity Check: rank range.
82 83
    PADDLE_ENFORCE_LE(output_size, 6,
                      "The output tensor's rank should be less than 6.");
84 85

    for (int axis : unsqz_dims) {
86
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
87
      // Vaildity Check: the axis bound
88 89
      PADDLE_ENFORCE_GE(cur, 0);
      PADDLE_ENFORCE_LE(cur, cur_output_size);
90 91 92 93 94 95 96 97 98
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }
      output_shape[cur] = 1;
99
      // Add the output size.
100
      cur_output_size++;
101 102
    }

103
    // Make output shape
104 105
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
106 107 108 109 110 111
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

    return framework::make_ddim(output_shape);
  }
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
129 130 131 132 133 134
};

class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
135 136 137 138 139 140 141 142 143 144 145
    AddInput("AxesTensor",
             "(Tensor<int32>, optional). The dimensions to be inserted. "
             "If it exists, it will replace Attr(axes).")
        .AsDispensable();
    AddInput(
        "AxesTensorList",
        "(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
        "If it exists, it will replace Attr(axes)."
        "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
146 147
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
148
                              "(std::vector<int>). List of integers,"
149
                              " indicating the dimensions to be inserted")
150
        .SetDefault({})
151 152
        .AddCustomChecker([](const std::vector<int> &axes) {
          // Validity Check: axes dims (<6).
153 154 155
          PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
                            "Invalid dimensions, dynamic dimensions should be "
                            "within [1, 6] dimensions (Eigen limit).");
156 157
          // Validity Check: the range of unsqueeze aixs.
          for (int axis : axes) {
158 159 160
            PADDLE_ENFORCE_LT(axis, 6,
                              "Invalid dimensions, input axis should be"
                              " within [1, 6] dimensions (Eigen limit).");
161 162
          }
        });
163
    AddComment(R"DOC(
164 165
    Unsqueeze Operator.

166 167 168 169 170 171
    Insert single-dimensional entries to the shape of a tensor.
    Takes one required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
172
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
173 174 175 176
    )DOC");
  }
};

177
class UnsqueezeGradOp : public framework::OperatorWithKernel {
178
 public:
179 180 181
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
182
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
183
    ctx->ShareLoD("X", framework::GradVarName("X"));
184
  }
185
};
186

187 188 189 190 191
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
192
class Unsqueeze2Op : public UnsqueezeOp {
193
 public:
194
  using UnsqueezeOp::UnsqueezeOp;
195
  void InferShape(framework::InferShapeContext *ctx) const override {
196
    UnsqueezeOp::InferShape(ctx);
197
    const auto &x_dims = ctx->GetInputDim("X");
198 199 200 201

    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("XShape"), true,
        "Output(XShape) of Unsqueeze operator should not be null.");
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }
};

class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
 public:
  void Make() override {
    UnsqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in UnsqueezeGradOp.")
        .AsIntermediate();
  }
};

H
hong 已提交
223 224
template <typename T>
class Unsqueeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
225
 public:
H
hong 已提交
226
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
227

H
hong 已提交
228 229
  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
230
    grad_op->SetType("unsqueeze2_grad");
H
hong 已提交
231 232 233 234 235
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
236 237 238
  }
};

239
class Unsqueeze2GradOp : public framework::OperatorWithKernel {
240
 public:
241 242 243 244 245 246
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE_EQ(context->HasInput("XShape"), true,
                      "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
247 248 249 250 251 252
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

253 254 255
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
256 257 258
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
259 260
  }
};
261 262 263 264 265

DECLARE_INPLACE_OP_INFERER(UnsqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(UnsqueezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
266 267 268 269
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
270 271 272 273
REGISTER_OPERATOR(
    unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
274
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp);
275 276

REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
H
hong 已提交
277 278 279
                  ops::Unsqueeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2GradOpMaker<paddle::imperative::OpBase>,
                  ops::UnsqueezeInplaceInferer);
280
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
281
                  ops::UnsqueezeGradInplaceInferer);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

REGISTER_OP_CPU_KERNEL(
    unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    unsqueeze_grad,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
297 298 299 300 301
    unsqueeze2, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
302 303 304 305 306 307 308
REGISTER_OP_CPU_KERNEL(
    unsqueeze2_grad,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);