unsqueeze_op.cc 13.8 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/operators/unsqueeze_op.h"
#include <memory>
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/op_registry.h"
20 21 22 23

namespace paddle {
namespace operators {

24
class UnsqueezeOp : public framework::OperatorWithKernel {
25
 public:
26 27 28 29 30 31 32
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of Unsqueeze operator should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of Unsqueeze operator should not be null.");
33

34 35
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    const auto &x_dims = ctx->GetInputDim("X");
36
    // Validity Check: input tensor dims (<6).
37 38 39
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
                      "Invalid dimensions, the rank of Input(X) "
                      "should be in the range of [1, 6] (Eigen limit)");
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    if (!axes.empty()) {
      auto out_dims = GetOutputShape(axes, x_dims);
      ctx->SetOutputDim("Out", out_dims);
      if (x_dims[0] == out_dims[0]) {
        // Only pass LoD when the first dimension of output and Input(X)
        // are the same.
        ctx->ShareLoD("X", "Out");
      }
    } else if (ctx->HasInputs("AxesTensorList")) {
      auto AxesTensorList = ctx->Inputs("AxesTensorList");
      int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
      PADDLE_ENFORCE_LE(output_size, 6,
                        "The output tensor's rank should be less than 6.");
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
    } else if (ctx->HasInput("AxesTensor")) {
      auto axes_dims = ctx->GetInputDim("AxesTensor");
      PADDLE_ENFORCE_EQ(
          axes_dims.size(), 1,
          "Input(AxesTensor)'s dimension of Op(unsqueeze) must be 1. "
          "But received AxesTensor's shape = [%s], "
          "AxesTensor's dimension = %d.",
          axes_dims, axes_dims.size());
      PADDLE_ENFORCE_GE(axes_dims[0], 0,
                        "Input(AxesTensor)'s shape must be known. But received "
                        "AxesTensor's shape = [%s]",
                        axes_dims);
      int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
      PADDLE_ENFORCE_LE(output_size, 6,
                        "The output tensor's rank should be less than 6.");
      std::vector<int> vec_out_dims(output_size, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
72
    }
73 74
  }

75
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
76
                                        const framework::DDim &in_dims) {
77 78
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
    int cur_output_size = in_dims.size();
79 80 81
    std::vector<int64_t> output_shape(output_size, 0);

    // Validity Check: rank range.
82 83
    PADDLE_ENFORCE_LE(output_size, 6,
                      "The output tensor's rank should be less than 6.");
84 85

    for (int axis : unsqz_dims) {
86
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
87
      // Vaildity Check: the axis bound
88 89
      PADDLE_ENFORCE_GE(cur, 0);
      PADDLE_ENFORCE_LE(cur, cur_output_size);
90 91 92 93 94 95 96 97 98
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }
      output_shape[cur] = 1;
99
      // Add the output size.
100
      cur_output_size++;
101 102
    }

103
    // Make output shape
104 105
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
106 107 108 109 110 111
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

    return framework::make_ddim(output_shape);
  }
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.device_context());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
129 130 131 132 133 134
};

class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
135 136 137 138 139 140 141 142 143 144 145
    AddInput("AxesTensor",
             "(Tensor<int32>, optional). The dimensions to be inserted. "
             "If it exists, it will replace Attr(axes).")
        .AsDispensable();
    AddInput(
        "AxesTensorList",
        "(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
        "If it exists, it will replace Attr(axes)."
        "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
146 147
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
148
                              "(std::vector<int>). List of integers,"
149
                              " indicating the dimensions to be inserted")
150
        .SetDefault({})
151 152
        .AddCustomChecker([](const std::vector<int> &axes) {
          // Validity Check: axes dims (<6).
153 154 155
          PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
                            "Invalid dimensions, dynamic dimensions should be "
                            "within [1, 6] dimensions (Eigen limit).");
156 157
          // Validity Check: the range of unsqueeze aixs.
          for (int axis : axes) {
158 159 160
            PADDLE_ENFORCE_LT(axis, 6,
                              "Invalid dimensions, input axis should be"
                              " within [1, 6] dimensions (Eigen limit).");
161 162
          }
        });
163
    AddComment(R"DOC(
164 165
    Unsqueeze Operator.

166 167 168 169 170 171
    Insert single-dimensional entries to the shape of a tensor.
    Takes one required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
172
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
173 174 175 176
    )DOC");
  }
};

177
class UnsqueezeGradOp : public framework::OperatorWithKernel {
178
 public:
179 180 181
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
182
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
183
    ctx->ShareLoD("X", framework::GradVarName("X"));
184
  }
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

template <typename T>
class UnsqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
    grad_op->SetType("unsqueeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
  }
208
};
209

210 211 212 213 214
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
215
class Unsqueeze2Op : public UnsqueezeOp {
216
 public:
217
  using UnsqueezeOp::UnsqueezeOp;
218
  void InferShape(framework::InferShapeContext *ctx) const override {
219
    UnsqueezeOp::InferShape(ctx);
220
    const auto &x_dims = ctx->GetInputDim("X");
221 222 223 224

    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("XShape"), true,
        "Output(XShape) of Unsqueeze operator should not be null.");
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }
};

class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
 public:
  void Make() override {
    UnsqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in UnsqueezeGradOp.")
        .AsIntermediate();
  }
};

H
hong 已提交
246 247
template <typename T>
class Unsqueeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
248
 public:
H
hong 已提交
249
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
250

H
hong 已提交
251 252
  std::unique_ptr<T> Apply() const override {
    auto *grad_op = new T();
253
    grad_op->SetType("unsqueeze2_grad");
H
hong 已提交
254 255 256 257 258
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
259 260 261
  }
};

262
class Unsqueeze2GradOp : public framework::OperatorWithKernel {
263
 public:
264 265 266 267 268 269
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE_EQ(context->HasInput("XShape"), true,
                      "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
                      "Input(Out@GRAD) shouldn't be null.");
270 271 272 273 274 275
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

276 277 278
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
279 280 281
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
282 283
  }
};
284 285 286 287 288

DECLARE_INPLACE_OP_INFERER(UnsqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(UnsqueezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
289 290
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(UnsqueezeGradOpNoNeedBufferVarInference,
                                      "X");
291 292 293 294
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
295 296 297 298 299
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
                  ops::UnsqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::UnsqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
                  ops::UnsqueezeGradOpNoNeedBufferVarInference);
300 301

REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
H
hong 已提交
302 303 304
                  ops::Unsqueeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Unsqueeze2GradOpMaker<paddle::imperative::OpBase>,
                  ops::UnsqueezeInplaceInferer);
305
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
306
                  ops::UnsqueezeGradInplaceInferer);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

REGISTER_OP_CPU_KERNEL(
    unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    unsqueeze_grad,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
322 323 324 325 326
    unsqueeze2, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
327 328 329 330 331 332 333
REGISTER_OP_CPU_KERNEL(
    unsqueeze2_grad,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);