Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
49b2cf5f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
49b2cf5f
编写于
7月 04, 2018
作者:
C
chenweihang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
adjust some code based reviewer's advice
上级
79333fa7
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
60 addition
and
186 deletion
+60
-186
paddle/fluid/operators/unsqueeze_op.cc
paddle/fluid/operators/unsqueeze_op.cc
+21
-9
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
+39
-177
未找到文件。
paddle/fluid/operators/unsqueeze_op.cc
浏览文件 @
49b2cf5f
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -36,15 +36,13 @@ class UnsqueezeOpInferShape : public framework::InferShapeBase {
PADDLE_ENFORCE
(
static_cast
<
int
>
(
x_dims
.
size
())
<=
6
,
"Invalid dimensions, dynamic dimensions should within "
"[1, 6] dimensions (Eigen limit)."
);
// Validity Check: the range of unsqueeze aixs.
for
(
int
axis
:
axes
)
{
PADDLE_ENFORCE
(
axis
<
6
,
"Invalid dimensions, input axis should within "
"[1, 6] dimensions (Eigen limit)."
);
}
auto
out_dims
=
GetOutputShape
(
axes
,
x_dims
);
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
if
(
x_dims
[
0
]
==
out_dims
[
0
])
{
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
}
static
framework
::
DDim
GetOutputShape
(
const
std
::
vector
<
int
>
unsqz_dims
,
...
...
@@ -102,6 +100,8 @@ class UnsqueezeOp : public framework::OperatorBase {
auto
&
axes
=
Attr
<
std
::
vector
<
int
>>
(
"axes"
);
auto
x_dims
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
().
dims
();
auto
out_dims
=
UnsqueezeOpInferShape
::
GetOutputShape
(
axes
,
x_dims
);
// auto out_dims =
// scope.FindVar(Output("Out"))->Get<framework::LoDTensor>().dims();
framework
::
AttributeMap
attrs
;
attrs
[
"shape"
]
=
framework
::
vectorize2int
(
out_dims
);
...
...
@@ -121,7 +121,19 @@ class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(Tensor). The output tensor of unsqueeze operator."
);
AddAttr
<
std
::
vector
<
int
>>
(
"axes"
,
"(std::vector<int>). List of positive integers,"
" indicate the dimensions to be inserted"
);
" indicate the dimensions to be inserted"
)
.
AddCustomChecker
([](
const
std
::
vector
<
int
>
&
axes
)
{
// Validity Check: axes dims (<6).
PADDLE_ENFORCE
(
static_cast
<
int
>
(
axes
.
size
())
<
6
,
"Invalid dimensions, dynamic dimensions should within "
"[1, 6] dimensions (Eigen limit)."
);
// Validity Check: the range of unsqueeze aixs.
for
(
int
axis
:
axes
)
{
PADDLE_ENFORCE
(
axis
<
6
,
"Invalid dimensions, input axis should within "
"[1, 6] dimensions (Eigen limit)."
);
}
});
AddAttr
<
bool
>
(
"inplace"
,
"(default: false) Unsqueeze the source tensor's shape without "
...
...
python/paddle/fluid/tests/unittests/test_unsqueeze_op.py
浏览文件 @
49b2cf5f
...
...
@@ -21,14 +21,11 @@ from op_test import OpTest
# Correct: General.
class
TestUnsqueezeOp
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
3
,
5
)
axes
=
(
0
,
2
)
new_shape
=
(
1
,
3
,
1
,
5
)
self
.
init_test_case
()
self
.
op_type
=
"unsqueeze"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"axes"
:
axes
,
"inplace"
:
False
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
new_shape
)}
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
self
.
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"axes"
:
self
.
axes
,
"inplace"
:
False
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
self
.
new_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -36,194 +33,59 @@ class TestUnsqueezeOp(OpTest):
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
1
,
2
)
self
.
new_shape
=
(
3
,
1
,
1
,
5
)
# Correct: Single input index.
class
TestUnsqueezeOp1
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
3
,
5
)
axes
=
(
-
1
,
)
new_shape
=
(
3
,
5
,
1
)
self
.
op_type
=
"unsqueeze"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"axes"
:
axes
,
"inplace"
:
False
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
new_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
# Correct: Single input index.
class
TestUnsqueezeOp1
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
-
1
,
)
self
.
new_shape
=
(
3
,
5
,
1
)
# Correct: Mixed input axis.
class
TestUnsqueezeOp2
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
3
,
5
)
axes
=
(
0
,
-
1
)
new_shape
=
(
1
,
3
,
5
,
1
)
self
.
op_type
=
"unsqueeze"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"axes"
:
axes
,
"inplace"
:
False
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
new_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestUnsqueezeOp2
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
0
,
-
1
)
self
.
new_shape
=
(
1
,
3
,
5
,
1
)
# Correct: There is duplicated axis.
class
TestUnsqueezeOp3
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
3
,
2
,
5
)
axes
=
(
0
,
3
,
3
)
new_shape
=
(
1
,
3
,
2
,
1
,
1
,
5
)
self
.
op_type
=
"unsqueeze"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"axes"
:
axes
,
"inplace"
:
False
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
new_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestUnsqueezeOp3
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
2
,
5
)
self
.
axes
=
(
0
,
3
,
3
)
self
.
new_shape
=
(
1
,
3
,
2
,
1
,
1
,
5
)
# Correct: Inplace.
class
TestUnsqueezeOpInplace1
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
3
,
5
)
axes
=
(
0
,
2
)
new_shape
=
(
1
,
3
,
1
,
5
)
self
.
op_type
=
"unsqueeze"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"axes"
:
axes
,
"inplace"
:
True
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
new_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestUnsqueezeOpInplace1
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
0
,
2
)
self
.
new_shape
=
(
1
,
3
,
1
,
5
)
# Correct: Inplace. There is mins index.
class
TestUnsqueezeOpInplace2
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
3
,
5
)
axes
=
(
0
,
-
2
)
new_shape
=
(
1
,
3
,
1
,
5
)
self
.
op_type
=
"unsqueeze"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"axes"
:
axes
,
"inplace"
:
True
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
new_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestUnsqueezeOpInplace2
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
5
)
self
.
axes
=
(
0
,
-
2
)
self
.
new_shape
=
(
1
,
3
,
1
,
5
)
# Correct: Inplace. There is duplicated axis.
class
TestUnsqueezeOpInplace3
(
OpTest
):
def
setUp
(
self
):
ori_shape
=
(
3
,
2
,
5
)
axes
=
(
0
,
3
,
3
)
new_shape
=
(
1
,
3
,
2
,
1
,
1
,
5
)
self
.
op_type
=
"unsqueeze"
self
.
inputs
=
{
"X"
:
np
.
random
.
random
(
ori_shape
).
astype
(
"float32"
)}
self
.
attrs
=
{
"axes"
:
axes
,
"inplace"
:
True
}
self
.
outputs
=
{
"Out"
:
self
.
inputs
[
"X"
].
reshape
(
new_shape
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
'''
# Error: Output dimension is error.
class TestUnsqueezeOp4(OpTest):
def setUp(self):
ori_shape = (3, 5)
axes = (0, 3)
new_shape = (1, 3, 1, 1, 5)
self.op_type = "unsqueeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inplace": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Error: Input axis is large than output range.
class TestUnsqueezeOp5(OpTest):
def setUp(self):
ori_shape = (3, 5)
axes = (0, 4)
new_shape = (1, 3, 5, 1)
self.op_type = "unsqueeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inplace": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
class
TestUnsqueezeOpInplace3
(
TestUnsqueezeOp
):
def
init_test_case
(
self
):
self
.
ori_shape
=
(
3
,
2
,
5
)
self
.
axes
=
(
0
,
3
,
3
)
self
.
new_shape
=
(
1
,
3
,
2
,
1
,
1
,
5
)
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Error: Input axes is large than Eigen limit.
class TestUnsqueezeOp6(OpTest):
def setUp(self):
ori_shape = (3, 5)
axes = (0, 2, 10)
new_shape = (1, 3, 1, 5, 1)
self.op_type = "unsqueeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inplace": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
# Error: Input axes size is large than Eigen limit.
class TestUnsqueezeOp7(OpTest):
def setUp(self):
ori_shape = (3, 5)
axes = (0, 2, 2, 2, 2, 2)
new_shape = (1, 3, 1, 1, 5, 1)
self.op_type = "unsqueeze"
self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
self.attrs = {"axes": axes, "inplace": False}
self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
'''
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录