unsqueeze_op.cc 7.0 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21

namespace paddle {
namespace operators {

22
class UnsqueezeOpInferShape : public framework::InferShapeBase {
23
 public:
24
  void operator()(framework::InferShapeContext *ctx) const override {
25 26 27 28 29
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of UnsqueezeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of UnsqueezeOp should not be null.");

30 31
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    const auto &x_dims = ctx->GetInputDim("X");
32
    // Validity Check: input tensor dims (<6).
33 34 35
    PADDLE_ENFORCE(x_dims.size() <= 6,
                   "Invalid dimensions, the rank of Input(X) "
                   "should be in the range of [1, 6] (Eigen limit)");
36 37
    auto out_dims = GetOutputShape(axes, x_dims);
    ctx->SetOutputDim("Out", out_dims);
38 39 40 41 42
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
43 44
  }

45
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
46
                                        const framework::DDim &in_dims) {
47 48
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
    int cur_output_size = in_dims.size();
49 50 51 52 53
    std::vector<int64_t> output_shape(output_size, 0);

    // Validity Check: rank range.
    PADDLE_ENFORCE(output_size <= 6,
                   "The output tensor's rank should be less than 6.");
54 55

    for (int axis : unsqz_dims) {
56
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
57 58
      // Vaildity Check: the axis bound
      PADDLE_ENFORCE(
59
          cur >= 0 && cur <= cur_output_size,
60
          "The unsqueeze dims must be within range of current rank.");
61 62 63 64 65 66 67 68 69
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }
      output_shape[cur] = 1;
70
      // Add the output size.
71
      cur_output_size++;
72 73
    }

74
    // Make output shape
75 76
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
77 78 79 80 81 82 83 84
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

    return framework::make_ddim(output_shape);
  }
};

85 86
class UnsqueezeOp : public framework::OperatorBase {
 public:
87
  using OperatorBase::OperatorBase;
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto &axes = Attr<std::vector<int>>("axes");
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
    auto out_dims = UnsqueezeOpInferShape::GetOutputShape(axes, x_dims);

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(out_dims);
    attrs["inplace"] = Attr<bool>("inplace");
    // Invoke Reshape op.
    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {Input("X")}}, {"Shape", {}}},
        {{"Out", {Output("Out")}}}, attrs);
    reshape_op->Run(scope, place);
  }
};

107 108 109 110 111 112
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
113
                              "(std::vector<int>). List of integers,"
114 115
                              " indicate the dimensions to be inserted")
        .AddCustomChecker([](const std::vector<int> &axes) {
116 117
          PADDLE_ENFORCE(!axes.empty(),
                         "Invalid axes, The unsqueeze axes is empty.");
118 119 120 121 122 123 124 125 126 127 128
          // Validity Check: axes dims (<6).
          PADDLE_ENFORCE(static_cast<int>(axes.size()) < 6,
                         "Invalid dimensions, dynamic dimensions should within "
                         "[1, 6] dimensions (Eigen limit).");
          // Validity Check: the range of unsqueeze aixs.
          for (int axis : axes) {
            PADDLE_ENFORCE(axis < 6,
                           "Invalid dimensions, input axis should within "
                           "[1, 6] dimensions (Eigen limit).");
          }
        });
129 130 131 132 133 134 135 136
    AddAttr<bool>(
        "inplace",
        "(default: false) Unsqueeze the source tensor's shape without "
        "memory copy. When Attr(inplace) is set true, the output "
        "tensor shares memory with Input(X), otherwise, a new output "
        "tensor is created, and its data are copied from Input(x).")
        .SetDefault(false);
    AddComment(R"DOC(
137 138 139 140 141 142 143 144 145
    Unsqueeze Operator.
    
    Insert single-dimensional entries to the shape of a tensor. 
    Takes one required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
146 147 148 149
    )DOC");
  }
};

150
class UnsqueezeGradInferShape : public framework::InferShapeBase {
151
 public:
152
  void operator()(framework::InferShapeContext *ctx) const override {
153
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
154
    ctx->ShareLoD("X", framework::GradVarName("X"));
155
  }
156
};
157

158 159
class UnsqueezeGradOp : public framework::OperatorBase {
 public:
160
  using OperatorBase::OperatorBase;
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto dx_name = Output(framework::GradVarName("X"));
    auto dout_name = Input(framework::GradVarName("Out"));
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(x_dims);
    attrs["inplace"] = Attr<bool>("inplace");

    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
        attrs);
    reshape_op->Run(scope, place);
177 178 179 180 181 182
  }
};

}  // namespace operators
}  // namespace paddle

183 184 185
// Tell linker to use reshape op.
USE_OP(reshape);

186 187
namespace ops = paddle::operators;
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
188
                  ops::UnsqueezeOpInferShape,
189
                  paddle::framework::DefaultGradOpDescMaker<true>);
190 191
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
                  ops::UnsqueezeGradInferShape);