logic.py 35.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
17
from .layer_function_generator import templatedoc
Z
zhiboniu 已提交
18
from ..static import Variable
W
Weilong Wu 已提交
19
# TODO: define logic functions of a tensor
20 21 22
from ..fluid.framework import _in_eager_mode_
if _in_eager_mode_:
    Tensor = paddle.fluid.framework.core.eager.Tensor
W
Weilong Wu 已提交
23 24
else:
    from ..framework import VarBase as Tensor
25 26 27 28

from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
from ..fluid.framework import _in_legacy_dygraph
29
# TODO: define logic functions of a tensor
W
wanghuancoder 已提交
30
from paddle import _C_ops
31
from paddle.tensor.creation import full
32

33 34
__all__ = []

35

36 37 38 39 40 41 42
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
    if _non_static_mode():
        op = getattr(_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
43 44 45 46
    check_variable_and_dtype(
        x, "x",
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
        op_name)
47
    if y is not None:
48 49 50 51
        check_variable_and_dtype(
            y, "y",
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
            op_name)
52 53 54 55 56 57 58 59 60 61 62 63 64 65
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())

    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
            % (op_name, x.dtype, y.dtype))

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
66 67 68 69 70 71
        helper.append_op(type=op_name,
                         inputs={
                             "X": x,
                             "Y": y
                         },
                         outputs={"Out": out})
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


def logical_and(x, y, out=None, name=None):
    r"""

    ``logical_and`` operator computes element-wise logical AND on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x \&\& y

    .. note::
        ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True])
            y = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_and(x, y)
            print(res) # [True False True False]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_and(x, y)

113 114 115 116 117 118
    return _logical_op(op_name="logical_and",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157


def logical_or(x, y, out=None, name=None):
    """

    ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x || y

    .. note::
        ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
    
    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_data = np.array([True, False], dtype=np.bool).reshape(2, 1)
            y_data = np.array([True, False, True, False], dtype=np.bool).reshape(2, 2)
            x = paddle.to_tensor(x_data)
            y = paddle.to_tensor(y_data)
            res = paddle.logical_or(x, y)
            print(res) # [[ True  True] [ True False]]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_or(x, y)
158 159 160 161 162 163
    return _logical_op(op_name="logical_or",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203


def logical_xor(x, y, out=None, name=None):
    r"""

    ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = (x || y) \&\& !(x \&\& y)

    .. note::
        ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_data = np.array([True, False], dtype=np.bool).reshape([2, 1])
            y_data = np.array([True, False, True, False], dtype=np.bool).reshape([2, 2])
            x = paddle.to_tensor(x_data)
            y = paddle.to_tensor(y_data)
            res = paddle.logical_xor(x, y)
            print(res) # [[False,  True], [ True, False]]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_xor(x, y)

204 205 206 207 208 209
    return _logical_op(op_name="logical_xor",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241


@templatedoc()
def logical_not(x, out=None, name=None):
    """

    ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``out`` is N-dim boolean ``Variable``.
    Each element of ``out`` is calculated by

    .. math::

        out = !x

    Args:
        x(Tensor):  Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float32, or float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_not(x)
            print(res) # [False  True False  True]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_not(x)
242 243 244 245 246 247
    return _logical_op(op_name="logical_not",
                       x=x,
                       y=None,
                       name=name,
                       out=out,
                       binary_op=False)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291


def is_empty(x, name=None):
    """

    Test whether a Tensor is empty.

    Args:
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])

    """
    if in_dygraph_mode():
        return _C_ops.final_state_is_empty(x)
    if _in_legacy_dygraph():
        return _C_ops.is_empty(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
    check_type(name, "name", (str, type(None)), "is_empty")

    helper = LayerHelper("is_empty", **locals())
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
292 293 294
    helper.append_op(type='is_empty',
                     inputs={'X': [x]},
                     outputs={'Out': [cond]})
295 296 297
    return cond


W
wawltor 已提交
298
def equal_all(x, y, name=None):
299
    """
300
    Returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
301

302 303
    Note: 
        The output has no gradient.
304 305

    Args:
306 307
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
308 309
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
310 311

    Returns:
W
wawltor 已提交
312
        Tensor: output Tensor, data type is bool, value is [False] or [True].
313 314 315 316 317

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
318

319 320 321
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
322
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
323
          print(result1) # result1 = [True ]
W
wawltor 已提交
324
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
325
          print(result2) # result2 = [False ]
326
    """
H
hong 已提交
327 328 329
    if in_dygraph_mode():
        return _C_ops.final_state_equal_all(x, y)

Z
zhiboniu 已提交
330
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
331
        return _C_ops.equal_all(x, y)
W
wawltor 已提交
332 333

    helper = LayerHelper("equal_all", **locals())
334
    out = helper.create_variable_for_type_inference(dtype='bool')
335 336 337 338 339 340
    helper.append_op(type='equal_all',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [out]})
341
    return out
Z
Zhen Wang 已提交
342 343 344


@templatedoc()
345
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
346 347 348 349
    """
    ${comment}

    Args:
350 351
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
352 353
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
354 355 356
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
357 358

    Returns:
359 360
        Tensor: ${out_comment}.

Z
Zhen Wang 已提交
361 362 363 364 365
    Examples:
        .. code-block:: python

          import paddle

366 367
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
368
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
369
                                  equal_nan=False, name="ignore_nan")
370 371 372
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
373
                                      equal_nan=True, name="equal_nan")
374 375 376
          np_result2 = result2.numpy()
          # [False]

377 378
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
379 380 381 382 383 384 385 386
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
387 388
    """

389
    if in_dygraph_mode():
390 391
        # NOTE(dev): Pass tol as Tensor to fix precision loss problem, because
        # C++ backend will cast it into float32 if passing float from python.
392 393 394
        as_tensor = lambda x: paddle.to_tensor(
            [x], dtype='float64', place='cpu')
        return _C_ops.final_state_allclose(x, y, as_tensor(rtol),
395
                                           as_tensor(atol), equal_nan)
396
    if _in_legacy_dygraph():
397 398
        return _C_ops.allclose(x, y, 'rtol', str(rtol), 'atol', str(atol),
                               'equal_nan', equal_nan)
399 400
    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
401 402 403 404 405 406 407
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

408
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
409
    outputs = {'Out': out}
410
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
411 412 413 414
    helper.append_op(type='allclose',
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
Z
Zhen Wang 已提交
415 416

    return out
417 418


W
wawltor 已提交
419 420
@templatedoc()
def equal(x, y, name=None):
421
    """
S
swtkiwi 已提交
422

423
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
424

425 426
    Note: 
        The output has no gradient.
427 428

    Args:
429 430
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
431 432 433 434
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
435
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
436 437 438 439 440
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
441 442
          import paddle

443 444
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
445
          result1 = paddle.equal(x, y)
N
Noel 已提交
446
          print(result1)  # result1 = [True False False]
447
    """
448 449
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
450 451
            "Type of input args must be float, bool, int or Tensor, but received type {}"
            .format(type(y)))
452 453 454
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

J
Jiabin Yang 已提交
455
    if in_dygraph_mode():
456 457
        default_axis = -1
        return _C_ops.final_state_equal(x, y, default_axis)
J
Jiabin Yang 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471
    else:
        if _in_legacy_dygraph():
            return _C_ops.equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            helper = LayerHelper("equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

472 473 474 475 476 477
            helper.append_op(type='equal',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
478
            return out
479

W
wawltor 已提交
480 481 482 483

@templatedoc()
def greater_equal(x, y, name=None):
    """
484
    Returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
485

486 487
    Note: 
        The output has no gradient.
W
wawltor 已提交
488 489

    Args:
490 491
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
492 493 494
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
495
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
496 497 498

    Examples:
        .. code-block:: python
N
Noel 已提交
499

W
wawltor 已提交
500 501
            import paddle

502 503
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
504
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
505
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
506
    """
J
Jiabin Yang 已提交
507
    if in_dygraph_mode():
508 509
        default_axis = -1
        return _C_ops.final_state_greater_equal(x, y, default_axis)
J
Jiabin Yang 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            helper = LayerHelper("greater_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

524 525 526 527 528 529
            helper.append_op(type='greater_equal',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
530
            return out
W
wawltor 已提交
531 532 533 534 535


@templatedoc()
def greater_than(x, y, name=None):
    """
536
    Returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
537

538 539
    Note: 
        The output has no gradient.
W
wawltor 已提交
540 541

    Args:
542 543
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
544 545 546
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
547
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
548 549 550

    Examples:
        .. code-block:: python
N
Noel 已提交
551

W
wawltor 已提交
552 553
            import paddle

554 555
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
556
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
557
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
558
    """
J
Jiabin Yang 已提交
559
    if in_dygraph_mode():
W
wanghuancoder 已提交
560
        return _C_ops.final_state_greater_than(x, y, -1)
J
Jiabin Yang 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            helper = LayerHelper("greater_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

575 576 577 578 579 580
            helper.append_op(type='greater_than',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
581
            return out
W
wawltor 已提交
582 583 584 585 586


@templatedoc()
def less_equal(x, y, name=None):
    """
587
    Returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
588

589 590
    Note: 
        The output has no gradient.
W
wawltor 已提交
591 592

    Args:
593 594
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
595 596 597 598
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
599
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
600 601 602

    Examples:
        .. code-block:: python
N
Noel 已提交
603

W
wawltor 已提交
604 605
            import paddle

606 607
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
608
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
609
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
610
    """
J
Jiabin Yang 已提交
611
    if in_dygraph_mode():
0
0x45f 已提交
612 613
        axis = -1
        return _C_ops.final_state_less_equal(x, y, axis)
J
Jiabin Yang 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            helper = LayerHelper("less_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

628 629 630 631 632 633
            helper.append_op(type='less_equal',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
634
            return out
W
wawltor 已提交
635 636 637 638 639


@templatedoc()
def less_than(x, y, name=None):
    """
640
    Returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
641

642 643
    Note: 
        The output has no gradient.
W
wawltor 已提交
644 645

    Args:
646 647
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
648 649 650 651
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
652
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
653 654 655

    Examples:
        .. code-block:: python
N
Noel 已提交
656

W
wawltor 已提交
657 658
            import paddle

659 660
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
661
            result1 = paddle.less_than(x, y)
N
Noel 已提交
662
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
663
    """
J
Jiabin Yang 已提交
664
    if in_dygraph_mode():
665 666
        default_axis = -1
        return _C_ops.final_state_less_than(x, y, default_axis)
J
Jiabin Yang 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            helper = LayerHelper("less_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

681 682 683 684 685 686
            helper.append_op(type='less_than',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
687
            return out
W
wawltor 已提交
688 689 690 691 692


@templatedoc()
def not_equal(x, y, name=None):
    """
693
    Returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
694
    
695 696
    Note: 
        The output has no gradient.
W
wawltor 已提交
697 698

    Args:
699 700
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
701 702 703 704
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
705
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
706 707 708

    Examples:
        .. code-block:: python
709

W
wawltor 已提交
710 711
            import paddle

712 713
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
714
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
715
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
716
    """
J
Jiabin Yang 已提交
717
    if in_dygraph_mode():
0
0x45f 已提交
718 719
        axis = -1
        return _C_ops.final_state_not_equal(x, y, axis)
J
Jiabin Yang 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733
    else:
        if _in_legacy_dygraph():
            return _C_ops.not_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            helper = LayerHelper("not_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

734 735 736 737 738 739
            helper.append_op(type='not_equal',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
740
            return out
Z
zhulei 已提交
741 742 743 744 745


def is_tensor(x):
    """

C
Chen Long 已提交
746
    Tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
747 748 749 750 751

    Args:
        x (object): Object to test.

    Returns:
C
Chen Long 已提交
752
        A boolean value. True if ``x`` is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
H
hong 已提交
768
    return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
769 770 771


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
Z
zhiboniu 已提交
772
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
773
        op = getattr(_C_ops, op_name)
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
        if binary_op:
            return op(x, y)
        else:
            return op(x)

    check_variable_and_dtype(
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name)
    if y is not None:
        check_variable_and_dtype(
            y, "y", ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
796 797 798 799 800 801
        helper.append_op(type=op_name,
                         inputs={
                             "X": x,
                             "Y": y
                         },
                         outputs={"Out": out})
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
        
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
0
0x45f 已提交
830
    if in_dygraph_mode() and out is None:
H
hong 已提交
831
        return _C_ops.final_state_bitwise_and(x, y)
832 833 834 835 836 837
    return _bitwise_op(op_name="bitwise_and",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
0
0x45f 已提交
862
    if in_dygraph_mode() and out is None:
H
hong 已提交
863 864
        return _C_ops.final_state_bitwise_or(x, y)

865 866 867 868 869 870
    return _bitwise_op(op_name="bitwise_or",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
0
0x45f 已提交
895
    if in_dygraph_mode() and out is None:
H
hong 已提交
896
        return _C_ops.final_state_bitwise_xor(x, y)
897 898 899 900 901 902
    return _bitwise_op(op_name="bitwise_xor",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
    
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
0
0x45f 已提交
925
    if in_dygraph_mode() and out is None:
H
hong 已提交
926
        return _C_ops.final_state_bitwise_not(x)
927

928 929 930 931 932 933
    return _bitwise_op(op_name="bitwise_not",
                       x=x,
                       y=None,
                       name=name,
                       out=out,
                       binary_op=False)
A
andyjpaddle 已提交
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, True]
    """

988
    if in_dygraph_mode():
989 990
        # NOTE(dev): Pass tol as Tensor to fix precision loss problem, because
        # C++ backend will cast it into float32 if passing float from python.
991 992 993
        as_tensor = lambda x: paddle.to_tensor(
            [x], dtype='float64', place='cpu')
        return _C_ops.final_state_isclose(x, y, as_tensor(rtol),
994
                                          as_tensor(atol), equal_nan)
995
    if _in_legacy_dygraph():
996 997
        return _C_ops.isclose(x, y, 'rtol', str(rtol), 'atol', str(atol),
                              'equal_nan', equal_nan)
A
andyjpaddle 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
    check_type(rtol, 'rtol', float, 'isclose')
    check_type(atol, 'atol', float, 'isclose')
    check_type(equal_nan, 'equal_nan', bool, 'isclose')

    helper = LayerHelper("isclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': x, 'Other': y}
    outputs = {'Out': out}
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
1011 1012 1013 1014
    helper.append_op(type='isclose',
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
A
andyjpaddle 已提交
1015
    return out