logic.py 34.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
17
from .layer_function_generator import templatedoc
Z
zhiboniu 已提交
18
from ..static import Variable
W
Weilong Wu 已提交
19
# TODO: define logic functions of a tensor
20 21 22
from ..fluid.framework import _in_eager_mode_
if _in_eager_mode_:
    Tensor = paddle.fluid.framework.core.eager.Tensor
W
Weilong Wu 已提交
23 24
else:
    from ..framework import VarBase as Tensor
25 26 27 28 29

from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
from ..fluid.framework import _in_legacy_dygraph
# TODO: define logic functions of a tensor  
W
wanghuancoder 已提交
30
from paddle import _C_ops
31
from paddle.tensor.creation import full
32

33 34
__all__ = []

35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
    if _non_static_mode():
        op = getattr(_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
    check_variable_and_dtype(x, "x", [
        "bool", "int8", "int16", "int32", "int64", "float32", "float64"
    ], op_name)
    if y is not None:
        check_variable_and_dtype(y, "y", [
            "bool", "int8", "int16", "int32", "int64", "float32", "float64"
        ], op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())

    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
            % (op_name, x.dtype, y.dtype))

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


def logical_and(x, y, out=None, name=None):
    r"""

    ``logical_and`` operator computes element-wise logical AND on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x \&\& y

    .. note::
        ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True])
            y = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_and(x, y)
            print(res) # [True False True False]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_and(x, y)

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


def logical_or(x, y, out=None, name=None):
    """

    ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x || y

    .. note::
        ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
    
    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_data = np.array([True, False], dtype=np.bool).reshape(2, 1)
            y_data = np.array([True, False, True, False], dtype=np.bool).reshape(2, 2)
            x = paddle.to_tensor(x_data)
            y = paddle.to_tensor(y_data)
            res = paddle.logical_or(x, y)
            print(res) # [[ True  True] [ True False]]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_or(x, y)
    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


def logical_xor(x, y, out=None, name=None):
    r"""

    ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = (x || y) \&\& !(x \&\& y)

    .. note::
        ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            x_data = np.array([True, False], dtype=np.bool).reshape([2, 1])
            y_data = np.array([True, False, True, False], dtype=np.bool).reshape([2, 2])
            x = paddle.to_tensor(x_data)
            y = paddle.to_tensor(y_data)
            res = paddle.logical_xor(x, y)
            print(res) # [[False,  True], [ True, False]]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_xor(x, y)

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_not(x, out=None, name=None):
    """

    ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``out`` is N-dim boolean ``Variable``.
    Each element of ``out`` is calculated by

    .. math::

        out = !x

    Args:
        x(Tensor):  Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float32, or float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_not(x)
            print(res) # [False  True False  True]
    """
    if in_dygraph_mode():
        return _C_ops.final_state_logical_not(x)
    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)


def is_empty(x, name=None):
    """

    Test whether a Tensor is empty.

    Args:
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])

    """
    if in_dygraph_mode():
        return _C_ops.final_state_is_empty(x)
    if _in_legacy_dygraph():
        return _C_ops.is_empty(x)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
    check_type(name, "name", (str, type(None)), "is_empty")

    helper = LayerHelper("is_empty", **locals())
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond


W
wawltor 已提交
276
def equal_all(x, y, name=None):
277 278 279
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
280
    **NOTICE**: The output of this OP has no gradient.
281 282

    Args:
283 284
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
285 286
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
287 288

    Returns:
W
wawltor 已提交
289
        Tensor: output Tensor, data type is bool, value is [False] or [True].
290 291 292 293 294

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
295

296 297 298
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
299
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
300
          print(result1) # result1 = [True ]
W
wawltor 已提交
301
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
302
          print(result2) # result2 = [False ]
303
    """
Z
zhiboniu 已提交
304
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
305
        return _C_ops.equal_all(x, y)
W
wawltor 已提交
306 307

    helper = LayerHelper("equal_all", **locals())
308 309
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
310 311
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
312
    return out
Z
Zhen Wang 已提交
313 314 315


@templatedoc()
316
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
317 318 319 320
    """
    ${comment}

    Args:
321 322
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
323 324
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
325 326 327
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
328 329

    Returns:
330 331 332 333 334 335 336 337
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
338 339 340 341 342 343

    Examples:
        .. code-block:: python

          import paddle

344 345
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
346
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
347
                                  equal_nan=False, name="ignore_nan")
348 349 350
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
351
                                      equal_nan=True, name="equal_nan")
352 353 354
          np_result2 = result2.numpy()
          # [False]

355 356
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
357 358 359 360 361 362 363 364
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
365 366
    """

367
    if in_dygraph_mode():
368 369 370 371 372 373
        # NOTE(dev): Pass tol as Tensor to fix precision loss problem, because
        # C++ backend will cast it into float32 if passing float from python.
        as_tensor = lambda x: paddle.to_tensor([x], dtype='float64', place='cpu')
        return _C_ops.final_state_allclose(x, y,
                                           as_tensor(rtol),
                                           as_tensor(atol), equal_nan)
374
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
375 376 377
        return _C_ops.allclose(x, y, 'rtol',
                               str(rtol), 'atol',
                               str(atol), 'equal_nan', equal_nan)
378 379
    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
380 381 382 383 384 385 386
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

387
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
388
    outputs = {'Out': out}
389
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
Z
Zhen Wang 已提交
390 391 392 393
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
394 395


W
wawltor 已提交
396 397
@templatedoc()
def equal(x, y, name=None):
398
    """
S
swtkiwi 已提交
399

400
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
401

W
wawltor 已提交
402
    **NOTICE**: The output of this OP has no gradient.
403 404

    Args:
405 406
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
407 408 409 410
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
411
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
412 413 414 415 416
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
417 418
          import paddle

419 420
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
421
          result1 = paddle.equal(x, y)
N
Noel 已提交
422
          print(result1)  # result1 = [True False False]
423
    """
424 425 426 427 428 429 430
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
            "Type of input args must be float, bool, int or Tensor, but received type {}".
            format(type(y)))
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

J
Jiabin Yang 已提交
431
    if in_dygraph_mode():
432 433
        default_axis = -1
        return _C_ops.final_state_equal(x, y, default_axis)
J
Jiabin Yang 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    else:
        if _in_legacy_dygraph():
            return _C_ops.equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            helper = LayerHelper("equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
454

W
wawltor 已提交
455 456 457 458 459

@templatedoc()
def greater_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
460

W
wawltor 已提交
461 462 463
    **NOTICE**: The output of this OP has no gradient.

    Args:
464 465
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
466 467 468 469 470 471 472
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
473

W
wawltor 已提交
474 475
            import paddle

476 477
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
478
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
479
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
480
    """
J
Jiabin Yang 已提交
481
    if in_dygraph_mode():
482 483
        default_axis = -1
        return _C_ops.final_state_greater_equal(x, y, default_axis)
J
Jiabin Yang 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            helper = LayerHelper("greater_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='greater_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
504 505 506 507 508 509


@templatedoc()
def greater_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
510

W
wawltor 已提交
511 512 513
    **NOTICE**: The output of this OP has no gradient.

    Args:
514 515
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
516 517 518 519 520 521 522
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
N
Noel 已提交
523

W
wawltor 已提交
524 525
            import paddle

526 527
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
528
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
529
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
530
    """
J
Jiabin Yang 已提交
531
    if in_dygraph_mode():
W
wanghuancoder 已提交
532
        return _C_ops.final_state_greater_than(x, y, -1)
J
Jiabin Yang 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            helper = LayerHelper("greater_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='greater_than',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
553 554 555 556 557 558


@templatedoc()
def less_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
559

W
wawltor 已提交
560 561 562
    **NOTICE**: The output of this OP has no gradient.

    Args:
563 564
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
565 566 567 568 569 570 571 572
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
573

W
wawltor 已提交
574 575
            import paddle

576 577
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
578
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
579
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
580
    """
J
Jiabin Yang 已提交
581
    if in_dygraph_mode():
0
0x45f 已提交
582 583
        axis = -1
        return _C_ops.final_state_less_equal(x, y, axis)
J
Jiabin Yang 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            helper = LayerHelper("less_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='less_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
604 605 606 607 608 609


@templatedoc()
def less_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
610

W
wawltor 已提交
611 612 613
    **NOTICE**: The output of this OP has no gradient.

    Args:
614 615
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
616 617 618 619 620 621 622 623
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
624

W
wawltor 已提交
625 626
            import paddle

627 628
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
629
            result1 = paddle.less_than(x, y)
N
Noel 已提交
630
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
631
    """
J
Jiabin Yang 已提交
632
    if in_dygraph_mode():
633 634
        default_axis = -1
        return _C_ops.final_state_less_than(x, y, default_axis)
J
Jiabin Yang 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            helper = LayerHelper("less_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='less_than',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
655 656 657 658 659 660


@templatedoc()
def not_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
661
    
W
wawltor 已提交
662 663 664
    **NOTICE**: The output of this OP has no gradient.

    Args:
665 666
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
667 668 669 670 671 672 673 674
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
675

W
wawltor 已提交
676 677
            import paddle

678 679
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
680
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
681
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
682
    """
J
Jiabin Yang 已提交
683
    if in_dygraph_mode():
0
0x45f 已提交
684 685
        axis = -1
        return _C_ops.final_state_not_equal(x, y, axis)
J
Jiabin Yang 已提交
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
    else:
        if _in_legacy_dygraph():
            return _C_ops.not_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            helper = LayerHelper("not_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='not_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
Z
zhulei 已提交
706 707 708 709 710


def is_tensor(x):
    """

C
chentianyu03 已提交
711
    This function tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
712 713 714 715 716

    Args:
        x (object): Object to test.

    Returns:
C
chentianyu03 已提交
717
        A boolean value. True if 'x' is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
H
hong 已提交
733
    return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
734 735 736


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
Z
zhiboniu 已提交
737
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
738
        op = getattr(_C_ops, op_name)
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        if binary_op:
            return op(x, y)
        else:
            return op(x)

    check_variable_and_dtype(
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name)
    if y is not None:
        check_variable_and_dtype(
            y, "y", ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
        
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
0
0x45f 已提交
792
    if in_dygraph_mode() and out is None:
H
hong 已提交
793
        return _C_ops.final_state_bitwise_and(x, y)
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
0
0x45f 已提交
820
    if in_dygraph_mode() and out is None:
H
hong 已提交
821 822
        return _C_ops.final_state_bitwise_or(x, y)

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
0
0x45f 已提交
849
    if in_dygraph_mode() and out is None:
H
hong 已提交
850
        return _C_ops.final_state_bitwise_xor(x, y)
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
    
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
0
0x45f 已提交
875
    if in_dygraph_mode() and out is None:
H
hong 已提交
876
        return _C_ops.final_state_bitwise_not(x)
877 878 879

    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False)
A
andyjpaddle 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, True]
    """

934
    if in_dygraph_mode():
935 936 937 938 939 940
        # NOTE(dev): Pass tol as Tensor to fix precision loss problem, because
        # C++ backend will cast it into float32 if passing float from python.
        as_tensor = lambda x: paddle.to_tensor([x], dtype='float64', place='cpu')
        return _C_ops.final_state_isclose(x, y,
                                          as_tensor(rtol),
                                          as_tensor(atol), equal_nan)
941
    if _in_legacy_dygraph():
A
andyjpaddle 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
        return _C_ops.isclose(x, y, 'rtol',
                              str(rtol), 'atol',
                              str(atol), 'equal_nan', equal_nan)

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
    check_type(rtol, 'rtol', float, 'isclose')
    check_type(atol, 'atol', float, 'isclose')
    check_type(equal_nan, 'equal_nan', bool, 'isclose')

    helper = LayerHelper("isclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': x, 'Other': y}
    outputs = {'Out': out}
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
    helper.append_op(
        type='isclose', inputs=inputs, outputs=outputs, attrs=attrs)
    return out