logic.py 24.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zhen Wang 已提交
15
from ..fluid.layer_helper import LayerHelper
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
Z
Zhen Wang 已提交
17
from ..fluid.layers.layer_function_generator import templatedoc
Z
zhiboniu 已提交
18
from ..static import Variable
Z
zhulei 已提交
19
from ..framework import VarBase as Tensor
J
Jiabin Yang 已提交
20
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode
21
# TODO: define logic functions of a tensor  
22 23 24 25 26
from ..fluid.layers import is_empty  # noqa: F401
from ..fluid.layers import logical_and  # noqa: F401
from ..fluid.layers import logical_not  # noqa: F401
from ..fluid.layers import logical_or  # noqa: F401
from ..fluid.layers import logical_xor  # noqa: F401
Z
zhiboniu 已提交
27
import paddle
W
wanghuancoder 已提交
28
from paddle import _C_ops
29
from paddle.tensor.creation import full
30

31 32
__all__ = []

33

W
wawltor 已提交
34
def equal_all(x, y, name=None):
35 36 37
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
38
    **NOTICE**: The output of this OP has no gradient.
39 40

    Args:
41 42
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
43 44
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
45 46

    Returns:
W
wawltor 已提交
47
        Tensor: output Tensor, data type is bool, value is [False] or [True].
48 49 50 51 52

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
53

54 55 56
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
57
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
58
          print(result1) # result1 = [True ]
W
wawltor 已提交
59
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
60
          print(result2) # result2 = [False ]
61
    """
Z
zhiboniu 已提交
62
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
63
        return _C_ops.equal_all(x, y)
W
wawltor 已提交
64 65

    helper = LayerHelper("equal_all", **locals())
66 67
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
68 69
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
70
    return out
Z
Zhen Wang 已提交
71 72 73


@templatedoc()
74
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
75 76 77 78
    """
    ${comment}

    Args:
79 80
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
81 82
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
83 84 85
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
86 87

    Returns:
88 89 90 91 92 93 94 95
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
96 97 98 99 100 101

    Examples:
        .. code-block:: python

          import paddle

102 103
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
104
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
105
                                  equal_nan=False, name="ignore_nan")
106 107 108
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
109
                                      equal_nan=True, name="equal_nan")
110 111 112
          np_result2 = result2.numpy()
          # [False]

113 114
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
115 116 117 118 119 120 121 122
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
123 124
    """

125 126 127
    if in_dygraph_mode():
        return _C_ops.final_state_allclose(x, y, rtol, atol, equal_nan)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
128 129 130
        return _C_ops.allclose(x, y, 'rtol',
                               str(rtol), 'atol',
                               str(atol), 'equal_nan', equal_nan)
131 132
    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
133 134 135 136 137 138 139
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

140
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
141
    outputs = {'Out': out}
142
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
Z
Zhen Wang 已提交
143 144 145 146
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
147 148


W
wawltor 已提交
149 150
@templatedoc()
def equal(x, y, name=None):
151
    """
S
swtkiwi 已提交
152

153
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
154

W
wawltor 已提交
155
    **NOTICE**: The output of this OP has no gradient.
156 157

    Args:
158 159
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
160 161 162 163
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
164
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
165 166 167 168 169
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
170 171
          import paddle

172 173
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
174
          result1 = paddle.equal(x, y)
N
Noel 已提交
175
          print(result1)  # result1 = [True False False]
176
    """
177 178 179 180 181 182 183
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
            "Type of input args must be float, bool, int or Tensor, but received type {}".
            format(type(y)))
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

J
Jiabin Yang 已提交
184
    if in_dygraph_mode():
0
0x45f 已提交
185 186
        axis = -1
        return _C_ops.final_state_equal(x, y, axis)
J
Jiabin Yang 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    else:
        if _in_legacy_dygraph():
            return _C_ops.equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            helper = LayerHelper("equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
207

W
wawltor 已提交
208 209 210 211 212

@templatedoc()
def greater_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
213

W
wawltor 已提交
214 215 216
    **NOTICE**: The output of this OP has no gradient.

    Args:
217 218
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
219 220 221 222 223 224 225
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
226

W
wawltor 已提交
227 228
            import paddle

229 230
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
231
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
232
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
233
    """
J
Jiabin Yang 已提交
234
    if in_dygraph_mode():
0
0x45f 已提交
235 236
        axis = -1
        return _C_ops.final_state_greater_equal(x, y, axis)
J
Jiabin Yang 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            helper = LayerHelper("greater_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='greater_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
257 258 259 260 261 262


@templatedoc()
def greater_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
263

W
wawltor 已提交
264 265 266
    **NOTICE**: The output of this OP has no gradient.

    Args:
267 268
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
269 270 271 272 273 274 275
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
N
Noel 已提交
276

W
wawltor 已提交
277 278
            import paddle

279 280
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
281
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
282
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
283
    """
J
Jiabin Yang 已提交
284
    if in_dygraph_mode():
285 286
        axis = -1  # default value
        return _C_ops.final_state_greater_than(x, y, axis)
J
Jiabin Yang 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    else:
        if _in_legacy_dygraph():
            return _C_ops.greater_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            helper = LayerHelper("greater_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='greater_than',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
307 308 309 310 311 312


@templatedoc()
def less_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
313

W
wawltor 已提交
314 315 316
    **NOTICE**: The output of this OP has no gradient.

    Args:
317 318
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
319 320 321 322 323 324 325 326
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
327

W
wawltor 已提交
328 329
            import paddle

330 331
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
332
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
333
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
334
    """
J
Jiabin Yang 已提交
335
    if in_dygraph_mode():
0
0x45f 已提交
336 337
        axis = -1
        return _C_ops.final_state_less_equal(x, y, axis)
J
Jiabin Yang 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            helper = LayerHelper("less_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='less_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
358 359 360 361 362 363


@templatedoc()
def less_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
364

W
wawltor 已提交
365 366 367
    **NOTICE**: The output of this OP has no gradient.

    Args:
368 369
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
370 371 372 373 374 375 376 377
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
378

W
wawltor 已提交
379 380
            import paddle

381 382
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
383
            result1 = paddle.less_than(x, y)
N
Noel 已提交
384
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
385
    """
J
Jiabin Yang 已提交
386
    if in_dygraph_mode():
0
0x45f 已提交
387 388
        axis = -1
        return _C_ops.final_state_less_than(x, y, axis)
J
Jiabin Yang 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    else:
        if _in_legacy_dygraph():
            return _C_ops.less_than(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            helper = LayerHelper("less_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='less_than',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
W
wawltor 已提交
409 410 411 412 413 414


@templatedoc()
def not_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
415
    
W
wawltor 已提交
416 417 418
    **NOTICE**: The output of this OP has no gradient.

    Args:
419 420
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
421 422 423 424 425 426 427 428
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
429

W
wawltor 已提交
430 431
            import paddle

432 433
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
434
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
435
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
436
    """
J
Jiabin Yang 已提交
437
    if in_dygraph_mode():
0
0x45f 已提交
438 439
        axis = -1
        return _C_ops.final_state_not_equal(x, y, axis)
J
Jiabin Yang 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    else:
        if _in_legacy_dygraph():
            return _C_ops.not_equal(x, y)
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            helper = LayerHelper("not_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

            helper.append_op(
                type='not_equal',
                inputs={'X': [x],
                        'Y': [y]},
                outputs={'Out': [out]})
            return out
Z
zhulei 已提交
460 461 462 463 464


def is_tensor(x):
    """

C
chentianyu03 已提交
465
    This function tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
466 467 468 469 470

    Args:
        x (object): Object to test.

    Returns:
C
chentianyu03 已提交
471
        A boolean value. True if 'x' is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
H
hong 已提交
487
    return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
488 489 490


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
Z
zhiboniu 已提交
491
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
492
        op = getattr(_C_ops, op_name)
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        if binary_op:
            return op(x, y)
        else:
            return op(x)

    check_variable_and_dtype(
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name)
    if y is not None:
        check_variable_and_dtype(
            y, "y", ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
        
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
0
0x45f 已提交
546
    if in_dygraph_mode() and out is None:
H
hong 已提交
547
        return _C_ops.final_state_bitwise_and(x, y)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
0
0x45f 已提交
574
    if in_dygraph_mode() and out is None:
H
hong 已提交
575 576
        return _C_ops.final_state_bitwise_or(x, y)

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
0
0x45f 已提交
603
    if in_dygraph_mode() and out is None:
H
hong 已提交
604
        return _C_ops.final_state_bitwise_xor(x, y)
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
    
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
0
0x45f 已提交
629
    if in_dygraph_mode() and out is None:
H
hong 已提交
630
        return _C_ops.final_state_bitwise_not(x)
631 632 633

    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False)
A
andyjpaddle 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, True]
    """

688 689 690
    if in_dygraph_mode():
        return _C_ops.final_state_isclose(x, y, rtol, atol, equal_nan)
    if _in_legacy_dygraph():
A
andyjpaddle 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        return _C_ops.isclose(x, y, 'rtol',
                              str(rtol), 'atol',
                              str(atol), 'equal_nan', equal_nan)

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
    check_type(rtol, 'rtol', float, 'isclose')
    check_type(atol, 'atol', float, 'isclose')
    check_type(equal_nan, 'equal_nan', bool, 'isclose')

    helper = LayerHelper("isclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': x, 'Other': y}
    outputs = {'Out': out}
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
    helper.append_op(
        type='isclose', inputs=inputs, outputs=outputs, attrs=attrs)
    return out