logic.py 22.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zhen Wang 已提交
15
from ..fluid.layer_helper import LayerHelper
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
Z
Zhen Wang 已提交
17
from ..fluid.layers.layer_function_generator import templatedoc
W
wawltor 已提交
18
from .. import fluid
19
from ..fluid.framework import in_dygraph_mode, Variable
Z
zhulei 已提交
20
from ..framework import VarBase as Tensor
21

22
# TODO: define logic functions of a tensor  
23 24 25 26 27 28 29
from ..fluid.layers import is_empty  # noqa: F401
from ..fluid.layers import logical_and  # noqa: F401
from ..fluid.layers import logical_not  # noqa: F401
from ..fluid.layers import logical_or  # noqa: F401
from ..fluid.layers import logical_xor  # noqa: F401

from paddle.common_ops_import import core
W
wanghuancoder 已提交
30
from paddle import _C_ops
31
from paddle.tensor.creation import full
32

33 34
__all__ = []

35

W
wawltor 已提交
36
def equal_all(x, y, name=None):
37 38 39
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
40
    **NOTICE**: The output of this OP has no gradient.
41 42

    Args:
43 44
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
45 46
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
47 48

    Returns:
W
wawltor 已提交
49
        Tensor: output Tensor, data type is bool, value is [False] or [True].
50 51 52 53 54

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
55

56 57 58
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
59
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
60
          print(result1) # result1 = [True ]
W
wawltor 已提交
61
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
62
          print(result2) # result2 = [False ]
63
    """
64
    if in_dygraph_mode():
W
wanghuancoder 已提交
65
        return _C_ops.equal_all(x, y)
W
wawltor 已提交
66 67

    helper = LayerHelper("equal_all", **locals())
68 69
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
70 71
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
72
    return out
Z
Zhen Wang 已提交
73 74 75


@templatedoc()
76
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
77 78 79 80
    """
    ${comment}

    Args:
81 82
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
83 84
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
85 86 87
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
88 89

    Returns:
90 91 92 93 94 95 96 97
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
98 99 100 101 102 103

    Examples:
        .. code-block:: python

          import paddle

104 105
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
106
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
107
                                  equal_nan=False, name="ignore_nan")
108 109 110
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
111
                                      equal_nan=True, name="equal_nan")
112 113 114
          np_result2 = result2.numpy()
          # [False]

115 116
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
117 118 119 120 121 122 123 124
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
125 126
    """

127
    if in_dygraph_mode():
W
wanghuancoder 已提交
128 129 130
        return _C_ops.allclose(x, y, 'rtol',
                               str(rtol), 'atol',
                               str(atol), 'equal_nan', equal_nan)
131 132 133

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
134 135 136 137 138 139 140
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

141
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
142
    outputs = {'Out': out}
143
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
Z
Zhen Wang 已提交
144 145 146 147
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
148 149


W
wawltor 已提交
150 151
@templatedoc()
def equal(x, y, name=None):
152
    """
S
swtkiwi 已提交
153

154
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
155

W
wawltor 已提交
156
    **NOTICE**: The output of this OP has no gradient.
157 158

    Args:
159 160
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
161 162 163 164
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
165
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
166 167 168 169 170
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
171 172
          import paddle

173 174
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
175
          result1 = paddle.equal(x, y)
N
Noel 已提交
176
          print(result1)  # result1 = [True False False]
177
    """
178 179 180 181 182 183 184
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
            "Type of input args must be float, bool, int or Tensor, but received type {}".
            format(type(y)))
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

185
    if in_dygraph_mode():
W
wanghuancoder 已提交
186
        return _C_ops.equal(x, y)
187

188 189 190 191
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "equal")
192 193 194 195 196 197 198
    helper = LayerHelper("equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
199
    return out
200

W
wawltor 已提交
201 202 203 204 205

@templatedoc()
def greater_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
206

W
wawltor 已提交
207 208 209
    **NOTICE**: The output of this OP has no gradient.

    Args:
210 211
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
212 213 214 215 216 217 218
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
219

W
wawltor 已提交
220 221
            import paddle

222 223
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
224
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
225
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
226
    """
227
    if in_dygraph_mode():
W
wanghuancoder 已提交
228
        return _C_ops.greater_equal(x, y)
229

230 231
    check_variable_and_dtype(x, "x",
                             ["bool", "float32", "float64", "int32", "int64"],
232
                             "greater_equal")
233 234
    check_variable_and_dtype(y, "y",
                             ["bool", "float32", "float64", "int32", "int64"],
235 236 237 238 239 240 241 242 243 244
                             "greater_equal")
    helper = LayerHelper("greater_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
245 246 247 248 249 250 251
    return out


@templatedoc()
def greater_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
252

W
wawltor 已提交
253 254 255
    **NOTICE**: The output of this OP has no gradient.

    Args:
256 257
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
258 259 260 261 262 263 264
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
N
Noel 已提交
265

W
wawltor 已提交
266 267
            import paddle

268 269
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
270
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
271
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
272
    """
273
    if in_dygraph_mode():
W
wanghuancoder 已提交
274
        return _C_ops.greater_than(x, y)
275

276 277
    check_variable_and_dtype(x, "x",
                             ["bool", "float32", "float64", "int32", "int64"],
278
                             "greater_than")
279 280
    check_variable_and_dtype(y, "y",
                             ["bool", "float32", "float64", "int32", "int64"],
281 282 283 284 285 286 287 288 289 290
                             "greater_than")
    helper = LayerHelper("greater_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
291 292 293 294 295 296 297
    return out


@templatedoc()
def less_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
298

W
wawltor 已提交
299 300 301
    **NOTICE**: The output of this OP has no gradient.

    Args:
302 303
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
304 305 306 307 308 309 310 311
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
312

W
wawltor 已提交
313 314
            import paddle

315 316
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
317
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
318
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
319
    """
320
    if in_dygraph_mode():
W
wanghuancoder 已提交
321
        return _C_ops.less_equal(x, y)
322

323 324 325 326
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "less_equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "less_equal")
327 328 329 330 331 332 333
    helper = LayerHelper("less_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_equal', inputs={'X': [x],
                                   'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
334 335 336 337 338 339 340
    return out


@templatedoc()
def less_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
341

W
wawltor 已提交
342 343 344
    **NOTICE**: The output of this OP has no gradient.

    Args:
345 346
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
347 348 349 350 351 352 353 354
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
355

W
wawltor 已提交
356 357
            import paddle

358 359
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
360
            result1 = paddle.less_than(x, y)
N
Noel 已提交
361
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
362
    """
363
    if in_dygraph_mode():
W
wanghuancoder 已提交
364
        return _C_ops.less_than(x, y)
365

366 367 368 369
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "less_than")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "less_than")
370 371 372 373 374 375 376
    helper = LayerHelper("less_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
377 378 379 380 381 382 383
    return out


@templatedoc()
def not_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
384
    
W
wawltor 已提交
385 386 387
    **NOTICE**: The output of this OP has no gradient.

    Args:
388 389
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
390 391 392 393 394 395 396 397
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
398

W
wawltor 已提交
399 400
            import paddle

401 402
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
403
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
404
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
405
    """
406
    if in_dygraph_mode():
W
wanghuancoder 已提交
407
        return _C_ops.not_equal(x, y)
408

409 410 411 412
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "not_equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "not_equal")
413 414 415 416 417 418 419
    helper = LayerHelper("not_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
420
    return out
Z
zhulei 已提交
421 422 423 424 425


def is_tensor(x):
    """

C
chentianyu03 已提交
426
    This function tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
427 428 429 430 431

    Args:
        x (object): Object to test.

    Returns:
C
chentianyu03 已提交
432
        A boolean value. True if 'x' is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
C
chentianyu03 已提交
448
    return isinstance(x, Tensor)
449 450 451 452


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
    if in_dygraph_mode():
W
wanghuancoder 已提交
453
        op = getattr(_C_ops, op_name)
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        if binary_op:
            return op(x, y)
        else:
            return op(x)

    check_variable_and_dtype(
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name)
    if y is not None:
        check_variable_and_dtype(
            y, "y", ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
        
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
    
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """

    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False)
A
andyjpaddle 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True, True]
    """

    if in_dygraph_mode():
        return _C_ops.isclose(x, y, 'rtol',
                              str(rtol), 'atol',
                              str(atol), 'equal_nan', equal_nan)

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
    check_type(rtol, 'rtol', float, 'isclose')
    check_type(atol, 'atol', float, 'isclose')
    check_type(equal_nan, 'equal_nan', bool, 'isclose')

    helper = LayerHelper("isclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': x, 'Other': y}
    outputs = {'Out': out}
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
    helper.append_op(
        type='isclose', inputs=inputs, outputs=outputs, attrs=attrs)
    return out