logic.py 19.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Z
Zhen Wang 已提交
15
from ..fluid.layer_helper import LayerHelper
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
Z
Zhen Wang 已提交
17
from ..fluid.layers.layer_function_generator import templatedoc
W
wawltor 已提交
18
from .. import fluid
19
from ..fluid.framework import in_dygraph_mode, Variable
Z
zhulei 已提交
20
from ..framework import VarBase as Tensor
21

22
# TODO: define logic functions of a tensor  
23 24 25 26 27 28 29
from ..fluid.layers import is_empty  # noqa: F401
from ..fluid.layers import logical_and  # noqa: F401
from ..fluid.layers import logical_not  # noqa: F401
from ..fluid.layers import logical_or  # noqa: F401
from ..fluid.layers import logical_xor  # noqa: F401

from paddle.common_ops_import import core
30

31 32
__all__ = []

33

W
wawltor 已提交
34
def equal_all(x, y, name=None):
35 36 37
    """
    This OP returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.

W
wawltor 已提交
38
    **NOTICE**: The output of this OP has no gradient.
39 40

    Args:
41 42
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
43 44
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
45 46

    Returns:
W
wawltor 已提交
47
        Tensor: output Tensor, data type is bool, value is [False] or [True].
48 49 50 51 52

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
53

54 55 56
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
57
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
58
          print(result1) # result1 = [True ]
W
wawltor 已提交
59
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
60
          print(result2) # result2 = [False ]
61
    """
62 63
    if in_dygraph_mode():
        return core.ops.equal_all(x, y)
W
wawltor 已提交
64 65

    helper = LayerHelper("equal_all", **locals())
66 67
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(
W
wawltor 已提交
68 69
        type='equal_all', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
70
    return out
Z
Zhen Wang 已提交
71 72 73


@templatedoc()
74
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
75 76 77 78
    """
    ${comment}

    Args:
79 80
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
81 82
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
83 84 85
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
86 87

    Returns:
88 89 90 91 92 93 94 95
        Tensor: ${out_comment}.

    Raises:
        TypeError: The data type of ``x`` must be one of float32, float64.
        TypeError: The data type of ``y`` must be one of float32, float64.
        TypeError: The type of ``rtol`` must be float.
        TypeError: The type of ``atol`` must be float.
        TypeError: The type of ``equal_nan`` must be bool.
Z
Zhen Wang 已提交
96 97 98 99 100 101

    Examples:
        .. code-block:: python

          import paddle

102 103
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
104
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
105
                                  equal_nan=False, name="ignore_nan")
106 107 108
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
109
                                      equal_nan=True, name="equal_nan")
110 111 112
          np_result2 = result2.numpy()
          # [False]

113 114
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
115 116 117 118 119 120 121 122
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          np_result1 = result1.numpy()
          # [False]
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          np_result2 = result2.numpy()
          # [True]
Z
Zhen Wang 已提交
123 124
    """

125
    if in_dygraph_mode():
126 127 128
        return core.ops.allclose(x, y, 'rtol',
                                 str(rtol), 'atol',
                                 str(atol), 'equal_nan', equal_nan)
129 130 131

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
132 133 134 135 136 137 138
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

139
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
140
    outputs = {'Out': out}
141
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
Z
Zhen Wang 已提交
142 143 144 145
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs)

    return out
146 147


W
wawltor 已提交
148 149
@templatedoc()
def equal(x, y, name=None):
150
    """
S
swtkiwi 已提交
151

152
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
153

W
wawltor 已提交
154
    **NOTICE**: The output of this OP has no gradient.
155 156

    Args:
157 158
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
159 160 161 162
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
163
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
164 165 166 167 168
        and the data type is bool. The result of this op is stop_gradient. 

    Examples:
        .. code-block:: python

W
wawltor 已提交
169 170
          import paddle

171 172
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
173
          result1 = paddle.equal(x, y)
N
Noel 已提交
174
          print(result1)  # result1 = [True False False]
175
    """
176 177 178
    if in_dygraph_mode():
        return core.ops.equal(x, y)

179 180 181 182
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "equal")
183 184 185 186 187 188 189
    helper = LayerHelper("equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
190
    return out
191

W
wawltor 已提交
192 193 194 195 196

@templatedoc()
def greater_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
197

W
wawltor 已提交
198 199 200
    **NOTICE**: The output of this OP has no gradient.

    Args:
201 202
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
203 204 205 206 207 208 209
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
210

W
wawltor 已提交
211 212
            import paddle

213 214
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
215
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
216
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
217
    """
218 219 220
    if in_dygraph_mode():
        return core.ops.greater_equal(x, y)

221 222
    check_variable_and_dtype(x, "x",
                             ["bool", "float32", "float64", "int32", "int64"],
223
                             "greater_equal")
224 225
    check_variable_and_dtype(y, "y",
                             ["bool", "float32", "float64", "int32", "int64"],
226 227 228 229 230 231 232 233 234 235
                             "greater_equal")
    helper = LayerHelper("greater_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
236 237 238 239 240 241 242
    return out


@templatedoc()
def greater_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
243

W
wawltor 已提交
244 245 246
    **NOTICE**: The output of this OP has no gradient.

    Args:
247 248
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
249 250 251 252 253 254 255
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x` .

    Examples:
        .. code-block:: python
N
Noel 已提交
256

W
wawltor 已提交
257 258
            import paddle

259 260
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
261
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
262
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
263
    """
264 265 266
    if in_dygraph_mode():
        return core.ops.greater_than(x, y)

267 268
    check_variable_and_dtype(x, "x",
                             ["bool", "float32", "float64", "int32", "int64"],
269
                             "greater_than")
270 271
    check_variable_and_dtype(y, "y",
                             ["bool", "float32", "float64", "int32", "int64"],
272 273 274 275 276 277 278 279 280 281
                             "greater_than")
    helper = LayerHelper("greater_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [out]})
W
wawltor 已提交
282 283 284 285 286 287 288
    return out


@templatedoc()
def less_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
289

W
wawltor 已提交
290 291 292
    **NOTICE**: The output of this OP has no gradient.

    Args:
293 294
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
295 296 297 298 299 300 301 302
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
303

W
wawltor 已提交
304 305
            import paddle

306 307
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
308
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
309
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
310
    """
311 312 313
    if in_dygraph_mode():
        return core.ops.less_equal(x, y)

314 315 316 317
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "less_equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "less_equal")
318 319 320 321 322 323 324
    helper = LayerHelper("less_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_equal', inputs={'X': [x],
                                   'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
325 326 327 328 329 330 331
    return out


@templatedoc()
def less_than(x, y, name=None):
    """
    This OP returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
332

W
wawltor 已提交
333 334 335
    **NOTICE**: The output of this OP has no gradient.

    Args:
336 337
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
338 339 340 341 342 343 344 345
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
N
Noel 已提交
346

W
wawltor 已提交
347 348
            import paddle

349 350
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
351
            result1 = paddle.less_than(x, y)
N
Noel 已提交
352
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
353
    """
354 355 356
    if in_dygraph_mode():
        return core.ops.less_than(x, y)

357 358 359 360
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "less_than")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "less_than")
361 362 363 364 365 366 367
    helper = LayerHelper("less_than", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
W
wawltor 已提交
368 369 370 371 372 373 374
    return out


@templatedoc()
def not_equal(x, y, name=None):
    """
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
N
Noel 已提交
375
    
W
wawltor 已提交
376 377 378
    **NOTICE**: The output of this OP has no gradient.

    Args:
379 380
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
381 382 383 384 385 386 387 388
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the output data type is bool: The tensor storing the output, the output shape is same as input :attr:`x`.

    Examples:
        .. code-block:: python
389

W
wawltor 已提交
390 391
            import paddle

392 393
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
394
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
395
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
396
    """
397 398 399
    if in_dygraph_mode():
        return core.ops.not_equal(x, y)

400 401 402 403
    check_variable_and_dtype(
        x, "x", ["bool", "float32", "float64", "int32", "int64"], "not_equal")
    check_variable_and_dtype(
        y, "y", ["bool", "float32", "float64", "int32", "int64"], "not_equal")
404 405 406 407 408 409 410
    helper = LayerHelper("not_equal", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')
    out.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [out]})
411
    return out
Z
zhulei 已提交
412 413 414 415 416


def is_tensor(x):
    """

C
chentianyu03 已提交
417
    This function tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
418 419 420 421 422

    Args:
        x (object): Object to test.

    Returns:
C
chentianyu03 已提交
423
        A boolean value. True if 'x' is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
            
    """
C
chentianyu03 已提交
439
    return isinstance(x, Tensor)
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
    if in_dygraph_mode():
        op = getattr(core.ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)

    check_variable_and_dtype(
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name)
    if y is not None:
        check_variable_and_dtype(
            y, "y", ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
        
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
    
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
    
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """

    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False)