operator.cc 121.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_transform.h"
22
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
23
#include "paddle/fluid/framework/details/nan_inf_utils.h"
24
#include "paddle/fluid/framework/op_call_stack.h"
25
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/operators/isfinite_op.h"
31
#include "paddle/fluid/operators/ops_extra_info.h"
32
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
35
#include "paddle/fluid/platform/profiler/event_tracing.h"
36
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
37
#include "paddle/phi/common/int_array.h"
38
#include "paddle/phi/common/scalar.h"
39
#include "paddle/phi/core/kernel_context.h"
40 41
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
42

43
namespace phi {
44
class DenseTensor;
45
}  // namespace phi
46

47
#ifdef PADDLE_WITH_XPU
48 49
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
50
#endif
Q
Qiao Longfei 已提交
51

52 53
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
54
#include "paddle/fluid/platform/mkldnn_op_list.h"
55 56
#endif

F
fwenguang 已提交
57 58 59 60
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
61
DECLARE_bool(benchmark);
62
DECLARE_bool(check_nan_inf);
63
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
64
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
65
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
66

Q
Qiao Longfei 已提交
67 68 69
namespace paddle {
namespace framework {

70 71 72 73 74 75
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
76

77
static DDim GetDimsDebug(const Scope& scope,
78
                         const std::string& name,
79
                         bool get_actual_dim = false) {
80
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
81 82
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
83 84
  }

85 86
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
87
    return tensor.dims();
88
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
89
    if (get_actual_dim) {
90
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
91
    } else {
92
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
93
    }
S
Steffy-zxf 已提交
94 95
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
96 97 98 99 100
  } else {
    return DDim({-1});
  }
}

101
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
102 103 104 105 106
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

107
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
108 109 110 111
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
112

113 114
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
115
    if (UNLIKELY(!tensor.IsInitialized())) {
116 117
      return "";
    }
118
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
119 120
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
121 122 123
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
124
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
125
    }
S
Steffy-zxf 已提交
126 127
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
128 129 130 131 132
  } else {
    return "";
  }
}

133
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
134 135 136 137 138 139 140 141 142 143
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

144 145
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
146 147 148 149
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
150 151
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
152 153 154 155 156 157 158 159 160 161
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

162
static int GetRowSize(const Scope& scope, const std::string& name) {
163 164 165 166 167
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

168 169
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
170 171 172 173 174
  }

  return -1;
}

175
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
176 177 178 179 180 181 182
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

183 184
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
185
    return tensor.lod();
Q
Qiao Longfei 已提交
186 187 188 189 190
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
191 192 193 194 195
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
196
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
197 198 199 200 201 202
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
203
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
204 205 206 207 208 209
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

210
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
211 212 213
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
214
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
215 216 217 218
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
219
#else
220
      auto dev_id = place.device;
P
peizhilin 已提交
221
      platform::SetDeviceId(dev_id);
222 223 224
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
225 226 227 228
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
229
#else
230
      auto dev_id = place.device;
231
      platform::SetXPUDeviceId(dev_id);
232 233 234 235 236 237 238 239
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
240
      auto dev_id = place.device;
241
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
242 243 244 245 246 247 248 249
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
250
      auto dev_id = place.device;
F
fwenguang 已提交
251
      platform::SetMLUDeviceId(dev_id);
252 253 254 255 256 257 258 259
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
260
      phi::DeviceManager::SetDevice(place);
261
#endif
P
peizhilin 已提交
262
    }
P
peizhilin 已提交
263

264
    {
265 266 267
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
268
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
269
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
270 271
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
272 273
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
274
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
275
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
276 277
      RunImpl(scope, place);
    }
278

Z
Zhang Ting 已提交
279
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
280
  } catch (platform::EnforceNotMet& exception) {
281
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
282
    throw std::move(exception);
283 284 285 286 287 288
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
289
  } catch (...) {
290
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
291
    std::rethrow_exception(std::current_exception());
292
  }
293 294
}

295
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
296
  return inputs_.find(name) != inputs_.end();
297 298
}

299
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
300
  auto& ins = Inputs(name);
301
  PADDLE_ENFORCE_LE(
302 303
      ins.size(),
      1UL,
304
      platform::errors::InvalidArgument(
305 306
          "Operator %s's input %s should contain only one variable.",
          type_,
307
          name));
Y
Yu Yang 已提交
308
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
309 310
}

Y
Yu Yang 已提交
311 312
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
313
  auto it = inputs_.find(name);
314
  PADDLE_ENFORCE_NE(
315 316 317 318
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
319
  return it->second;
Y
Yan Chunwei 已提交
320 321
}

322
bool OperatorBase::HasOutputs(const std::string& name) const {
323
  if (outputs_.find(name) != outputs_.end()) {
324 325 326 327 328 329
    return true;
  } else {
    return false;
  }
}

330
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
331
  auto& outs = Outputs(name);
332
  PADDLE_ENFORCE_LE(
333 334
      outs.size(),
      1UL,
335
      platform::errors::InvalidArgument(
336 337
          "Operator %s's output %s should contain only one variable.",
          type_,
338
          name));
Y
Yu Yang 已提交
339
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
340 341
}

Y
Yu Yang 已提交
342 343
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
344
  auto it = outputs_.find(name);
345
  PADDLE_ENFORCE_NE(
346 347
      it,
      outputs_.end(),
348 349
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
350
  return it->second;
Y
Yan Chunwei 已提交
351 352
}

353
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
354
  std::stringstream ss;
Y
Yu Yang 已提交
355
  ss << "Op(" << type_ << "), inputs:{";
356

357
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
358 359
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
360 361
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
362 363
  }

Y
Yu Yang 已提交
364 365
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
366 367
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
368 369
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
370 371
      auto var_name = input.second[i];
      ss << var_name;
372
      if (scope) {
Q
Qiao Longfei 已提交
373 374 375 376 377 378 379
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
380 381 382
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
383
          ss << ":" << dtype;
384 385
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
386
          ss << "(" << GetPlace(*scope, var_name) << ")";
387
        }
388
      }
Y
Yu Yang 已提交
389 390 391
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
392
    }
Y
Yu Yang 已提交
393
    ss << "]";
Y
Yu Yang 已提交
394 395
    ++it;
    if (it != inputs_.end()) {
396 397
      ss << ", ";
    }
Q
Qiao Longfei 已提交
398
  }
Y
Yu Yang 已提交
399
  ss << "}, outputs:{";
Y
Yu Yang 已提交
400 401
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
402 403
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
404 405
      auto var_name = output.second[i];
      ss << var_name;
406
      if (scope) {
Q
Qiao Longfei 已提交
407 408 409 410 411 412 413
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
414 415
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
416 417
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
418
          ss << "(" << GetPlace(*scope, var_name) << ")";
419
        }
420
      }
Y
Yu Yang 已提交
421 422 423
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
424
    }
Y
Yu Yang 已提交
425
    ss << "]";
Y
Yu Yang 已提交
426 427
    ++it;
    if (it != outputs_.end()) {
428 429
      ss << ", ";
    }
Q
Qiao Longfei 已提交
430
  }
Y
Yu Yang 已提交
431
  ss << "}.";
Q
Qiao Longfei 已提交
432 433 434
  return ss.str();
}

Y
Yu Yang 已提交
435
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
436 437
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
438
                           const AttributeMap& attrs)
S
sneaxiy 已提交
439 440 441 442 443 444
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
445 446 447 448 449 450 451 452
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
453
  // In OperatorBase level, all attributes with VarDesc type will be considered
454 455 456 457 458 459
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
460
}
461

Q
qijun 已提交
462 463
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
464
  for (auto& o : inputs_) {
Q
qijun 已提交
465 466 467 468 469 470
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
471 472 473 474 475 476 477 478 479 480
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
481
  auto& info = Info();
Y
Yu Yang 已提交
482 483

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
484
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
485 486 487 488 489 490 491 492 493
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
494 495
}

496
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
497
  if (info_ == nullptr || info_->proto_ == nullptr) return;
498

S
sneaxiy 已提交
499
  for (auto& in : info_->Proto().inputs()) {
500
    if (!in.dispensable() && !in.extra()) {
501
      PADDLE_ENFORCE_NE(
502 503 504 505
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
506
    }
507 508
  }

S
sneaxiy 已提交
509
  for (auto& out : info_->Proto().outputs()) {
510
    if (!out.dispensable() && !out.extra()) {
511
      PADDLE_ENFORCE_NE(
512 513 514 515
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
516
    }
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
532

533 534
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
535 536
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
537 538
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
539
  } else {
540
    PADDLE_THROW(platform::errors::InvalidArgument(
541
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
542
        ToTypeName(var.Type())));
Q
QI JUN 已提交
543 544 545
  }
}

546
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
547 548
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
549 550
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
551
  } else {
552
    PADDLE_THROW(platform::errors::InvalidArgument(
553
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
554
        ToTypeName(var->Type())));
Q
QI JUN 已提交
555 556 557
  }
}

558
bool ExecutionContext::HasInput(const std::string& name) const {
559
  auto* var = InputVar(name);
560 561 562
  return var != nullptr;
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

577
bool ExecutionContext::HasOutput(const std::string& name) const {
578
  auto* var = OutputVar(name);
579 580 581
  return var != nullptr;
}

X
Xin Pan 已提交
582
const Variable* ExecutionContext::InputVar(const std::string& name) const {
583 584
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
585 586 587
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

588
  PADDLE_ENFORCE_LE(
589 590
      it->second.size(),
      1UL,
591
      platform::errors::InvalidArgument(
592
          "Operator %s's input %s should contain only one variable.",
593 594
          op_.Type(),
          name));
X
Xin Pan 已提交
595 596 597
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
598
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
599 600 601
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

602
  PADDLE_ENFORCE_LE(
603 604
      it->second.size(),
      1UL,
605 606
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
607 608
          op_.Type(),
          name));
X
Xin Pan 已提交
609 610 611
  return it->second.empty() ? nullptr : it->second[0];
}

612
template <>
613 614
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
615 616
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
617 618
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
619 620
    return {};
  }
621
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
622
  res.reserve(vars.size());
623 624 625
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
626
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
627
                   if (var == nullptr) return nullptr;
628 629 630 631 632 633 634 635
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
636 637 638 639
                 });
  return res;
}

640
template <>
641
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
642
    const std::string& name) const {
H
hong 已提交
643 644 645
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
646 647
    return {};
  }
648
  std::vector<phi::DenseTensor*> res;
649
  res.reserve(vars.size());
650 651 652
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
653
                 [&](Variable* var) -> phi::DenseTensor* {
654
                   return var == nullptr ? nullptr
655
                                         : var->GetMutable<phi::DenseTensor>();
656
                 });
657 658 659
  return res;
}

Y
Yu Yang 已提交
660
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
661
  // check in new Function kernel first
662
  bool has_phi_kernel = false;
663
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
664
  auto kernel_key_map =
665
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
666
  for (auto& kernel : kernel_key_map) {
667
    has_phi_kernel = true;
668
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
669 670 671 672
      return true;
    }
  }

Y
Yu Yang 已提交
673 674
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
675 676 677 678 679 680 681 682 683 684 685 686 687
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
688 689 690
      return true;
    }
  }
H
hong 已提交
691

Y
Yu Yang 已提交
692 693 694
  return false;
}

695 696
class RuntimeInferShapeContext : public InferShapeContext {
 public:
697
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
698
      : op_(op), ctx_(ctx) {}
699 700

  bool HasInput(const std::string& name) const override {
701
    // has only one input
X
Xin Pan 已提交
702
    const auto& ins = ctx_.inputs;
703 704
    auto it = ins.find(name);
    if (it == ins.end()) {
705 706
      return false;
    }
707
    const auto& in = it->second;
X
Xin Pan 已提交
708
    if (in.size() == 0) return false;
709
    PADDLE_ENFORCE_EQ(
710 711
        in.size(),
        1UL,
712 713
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
714
    return in[0] != nullptr;
715 716 717
  }

  bool HasOutput(const std::string& name) const override {
718
    // has only one output
X
Xin Pan 已提交
719
    const auto& outs = ctx_.outputs;
720 721
    auto it = outs.find(name);
    if (it == outs.end()) {
722 723
      return false;
    }
724
    const auto& out = it->second;
X
Xin Pan 已提交
725
    if (out.size() == 0) {
726 727
      return false;
    }
728
    PADDLE_ENFORCE_EQ(
729 730
        out.size(),
        1UL,
731 732
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
733
    return out[0] != nullptr;
734 735
  }

736 737 738 739
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

740
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
741 742
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
743
    if (it == ins.end() || it->second.empty()) {
744 745
      return false;
    }
X
Xin Pan 已提交
746 747
    for (auto& input : it->second) {
      if (input == nullptr) {
748 749 750 751 752 753
        return false;
      }
    }
    return true;
  }

754 755
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
756 757
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
758
    if (it == outs.end() || it->second.empty()) {
759 760
      return false;
    }
Y
YuanRisheng 已提交
761
    if (!allow_null) {
762 763
      for (auto& output : it->second) {
        if (output == nullptr) return false;
764 765
      }
    }
Y
YuanRisheng 已提交
766
    return true;
767 768
  }

769 770 771
  AttrReader Attrs() const override {
    return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
  }
772

H
hong 已提交
773
  std::vector<std::string> Inputs(const std::string& name) const override {
774 775 776
    return op_.Inputs(name);
  }

H
hong 已提交
777
  std::vector<std::string> Outputs(const std::string& name) const override {
778 779 780
    return op_.Outputs(name);
  }

781 782 783
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
784 785
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
786 787 788
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
789 790 791
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
792 793 794 795 796 797 798
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
799 800
        idx,
        op_proto->outputs().size(),
801 802 803
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
804 805 806
            op_.Type(),
            idx,
            op_proto->outputs().size()));
807 808 809
    return op_proto->outputs()[idx].name();
  }

810 811 812
  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
813
                size_t j = 0) override {
X
Xin Pan 已提交
814 815
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
816
    PADDLE_ENFORCE_NE(
817 818
        in_it,
        ctx_.inputs.end(),
819 820
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
821 822
        out_it,
        ctx_.outputs.end(),
823
        platform::errors::NotFound("Output %s does not exist.", out));
824 825
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
826 827 828
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
829 830 831 832
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
833 834 835
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
836 837
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
838 839 840

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
841

842
    PADDLE_ENFORCE_EQ(
843 844
        in_var->Type(),
        out_var->Type(),
845
        platform::errors::InvalidArgument(
846 847
            "The type of input (%s) and output (%s) are inconsistent.",
            in,
848
            out));
849

850 851 852
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
853 854 855
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
856 857 858
    } else if (in_var->IsType<phi::DenseTensor>()) {
      auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
      auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
859 860
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
861
      PADDLE_THROW(platform::errors::Unimplemented(
862
          "Currently, the input type of ShareDim only can be phi::DenseTensor "
863
          "or SelectedRows."));
864 865 866
    }
  }

H
hong 已提交
867 868 869 870
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
871 872
    PADDLE_ENFORCE_NE(in_it,
                      ctx_.inputs.end(),
H
hong 已提交
873 874 875
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
876 877 878 879
        out_it,
        ctx_.outputs.end(),
        platform::errors::NotFound(
            "Output [%s] found error in Op [%s]", out, op_.Type()));
H
hong 已提交
880 881 882 883 884

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
885 886
        in_var_list.size(),
        out_var_list.size(),
H
hong 已提交
887
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
888
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
889 890 891 892 893 894 895 896 897 898
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
899
      if (!in_var->IsType<phi::DenseTensor>()) return;
H
hong 已提交
900
      Variable* out_var = out_var_list[i];
901 902 903 904 905 906 907 908 909
      PADDLE_ENFORCE_EQ(
          out_var->IsType<phi::DenseTensor>(),
          true,
          platform::errors::PreconditionNotMet(
              "The %d-th output of Output(%s) must be phi::DenseTensor.",
              i,
              out_var_names[i]));
      auto& in_tensor = in_var->Get<phi::DenseTensor>();
      auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
H
hong 已提交
910 911 912 913 914 915 916 917
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

918 919 920
  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
Q
Qiao Longfei 已提交
921
                size_t j = 0) const override {
X
Xin Pan 已提交
922 923
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
924
    PADDLE_ENFORCE_NE(
925 926
        in_it,
        ctx_.inputs.end(),
927 928
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
929 930
        out_it,
        ctx_.outputs.end(),
931
        platform::errors::NotFound("Output %s does not exist.", out));
932 933
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
934 935 936
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
937 938 939 940
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
941 942 943
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
944 945
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
946 947

    Variable* in_var = in_it->second.at(i);
948
    if (!in_var->IsType<phi::DenseTensor>()) return;
X
Xin Pan 已提交
949
    Variable* out_var = out_it->second.at(j);
950
    PADDLE_ENFORCE_EQ(
951
        out_var->IsType<phi::DenseTensor>(),
952
        true,
953
        platform::errors::InvalidArgument(
954 955 956 957 958
            "The %zu-th output of Output(%s) must be phi::DenseTensor.",
            j,
            out));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
Q
Qiao Longfei 已提交
959
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
960

M
mozga-intel 已提交
961 962
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
963
// Shall we have a better method to shared info between in/out phi::DenseTensor?
M
mozga-intel 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
980 981
  }

982
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
983
    PADDLE_THROW(platform::errors::PreconditionNotMet(
984
        "GetLoDLevel is only used in compile time. The calculation of "
985
        "output's actual lod is different among operators so that should be "
986
        "set in the runtime kernel."));
987 988
  }

989 990
  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
991
                   size_t j = 0) const override {
992
    PADDLE_THROW(platform::errors::PreconditionNotMet(
993
        "SetLoDLevel is only used in compile time. The calculation of "
994
        "output's actual lod is different among operators so that should be "
995
        "set in the runtime kernel."));
C
chengduo 已提交
996 997
  }

998 999
  bool IsRuntime() const override { return true; }

1000 1001 1002 1003 1004
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
1005
               phi::DataLayout::kMKLDNN));
1006
    } catch (const std::bad_cast& exp) {
1007 1008 1009 1010
      return false;
    }
  }

1011
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
1012
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
1013
  GetInputVarPtrs(const std::string& name) const override {
1014
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
1015
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
1016 1017 1018 1019 1020
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
1021
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
1022
  GetOutputVarPtrs(const std::string& name) const override {
1023
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
1024
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
1025 1026 1027 1028 1029
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
1030 1031
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
1032
    PADDLE_ENFORCE_EQ(
1033 1034
        vars.size(),
        1UL,
1035 1036
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
1037 1038
            name,
            vars.size()));
X
Xin Pan 已提交
1039 1040 1041 1042 1043 1044 1045 1046
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

1047 1048 1049 1050
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
1061 1062
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1063
    PADDLE_ENFORCE_EQ(
1064 1065
        vars.size(),
        1UL,
1066 1067
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
1068 1069
                                          name,
                                          vars.size()));
X
Xin Pan 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1079 1080 1081 1082 1083 1084 1085 1086
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1087
 protected:
X
Xin Pan 已提交
1088
  DDim GetDim(Variable* var) const {
1089 1090
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1091 1092
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dims();
1093 1094
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1095
    } else {
1096
      PADDLE_THROW(platform::errors::InvalidArgument(
1097
          "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
1098 1099
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1100 1101 1102
    }
  }

X
Xin Pan 已提交
1103 1104 1105
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
1106 1107 1108
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(ret),
X
Xin Pan 已提交
1109 1110 1111 1112
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1113
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1114 1115
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1116 1117
  }

X
Xin Pan 已提交
1118
  void SetDim(Variable* var, const DDim& dim) {
1119 1120
    if (var->IsType<phi::DenseTensor>()) {
      var->GetMutable<phi::DenseTensor>()->Resize(dim);
1121 1122
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1123
    } else {
1124
      PADDLE_THROW(platform::errors::Unimplemented(
1125 1126
          "Variable type error, expect phi::DenseTensor or SelectedRows, but "
          "received "
1127 1128
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1129 1130 1131 1132 1133 1134
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1135 1136
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
1137 1138 1139 1140
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
1141 1142
                          length,
                          dims.size()));
X
Xin Pan 已提交
1143 1144 1145 1146 1147
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1148 1149 1150
    }
  }

F
fengjiayi 已提交
1151 1152
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1153 1154
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1155 1156
  }

X
Xin Pan 已提交
1157 1158 1159 1160
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
1161 1162 1163
    std::transform(vars.begin(),
                   vars.end(),
                   retv.begin(),
X
Xin Pan 已提交
1164
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
1165 1166
                             this,
                             std::placeholders::_1));
X
Xin Pan 已提交
1167 1168 1169 1170
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1171 1172 1173
    return ToVarType(var->Type());
  }

1174 1175 1176
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1177
    PADDLE_ENFORCE_NE(
1178 1179
        it,
        ctx_.inputs.end(),
1180 1181
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1182 1183 1184 1185 1186
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1187
    PADDLE_ENFORCE_NE(
1188 1189
        it,
        ctx_.outputs.end(),
1190 1191
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1192
    return it->second;
F
fengjiayi 已提交
1193 1194
  }

1195
  const OperatorBase& op_;
X
Xin Pan 已提交
1196
  const RuntimeContext& ctx_;
1197 1198
};

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
struct OperatorWithKernel::CacheImpl {
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
                     RuntimeInferShapeContext* infer_shape_ctx)
      : kernel_ctx_(kernel_ctx), infer_shape_ctx_(infer_shape_ctx) {}

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
};

1214 1215
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1216
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1217 1218 1219
  if (tensor.memory_size() == 0) {
    return;
  }
1220 1221
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1222 1223
    return;
  }
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1236 1237
}

1238 1239 1240 1241
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1242 1243
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1256 1257
          op_kernels.begin(),
          op_kernels.end(),
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1269 1270
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1283 1284
          op_kernels.begin(),
          op_kernels.end(),
1285 1286 1287 1288 1289 1290 1291
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
                   paddle::platform::is_xpu_support_op(type_,
                                                       kern_pair.first) &&
                   !paddle::platform::is_in_xpu_black_list(type_);
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1329 1330
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1331 1332 1333 1334 1335
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1336 1337 1338 1339
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
                           kern_pair.first.dtype() ==
                               framework::TransToPhiDataType(data_type);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
                   kern_pair.first.data_type_ == data_type;
          });
    }
1358
  }
1359 1360
}

1361
bool OperatorWithKernel::SupportsKernelType(
1362
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1363 1364
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1365 1366 1367 1368 1369
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1370
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1371 1372 1373
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
1374 1375
  }
#endif
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, kernel_type);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
  }
#endif

1396
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1397 1398 1399 1400 1401
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1402
#ifdef PADDLE_WITH_MKLDNN
1403
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1404 1405 1406 1407 1408 1409 1410 1411
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
    tmp_kernel_type.data_layout_ = framework::DataLayout::kMKLDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1412
  return kernel_iter != kernels.end();
1413 1414
}

1415 1416
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1417
  const std::string use_mkldnn_attr = "use_mkldnn";
1418
  return ctx.HasAttr(use_mkldnn_attr) && ctx.Attr<bool>(use_mkldnn_attr) &&
1419 1420
         platform::is_cpu_place(ctx.GetPlace()) &&
         this->SupportsMKLDNN(data_type);
1421 1422
}

1423 1424 1425 1426 1427 1428 1429
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1430
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1431 1432
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1433
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1434
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1435 1436
}

L
luotao1 已提交
1437 1438
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1439 1440
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1441 1442 1443
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1444
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1445
    all_kernels_must_compute_runtime_shape_ = true;
1446
  const Scope* cur_scope = &scope;
1447
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1448 1449
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1450
    pre_scope_ = cur_scope;
1451 1452 1453 1454 1455
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
    if (!all_kernels_must_compute_runtime_shape_)
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1456
  } else {
1457 1458 1459 1460 1461 1462
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1463
    }
1464
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1465 1466 1467 1468 1469 1470
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1471
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1472
  bool fallback_to_cpu = false;
1473
  auto* dev_ctx = pool.Get(place);
1474

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1485
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1486 1487 1488 1489
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1490

1491 1492 1493 1494 1495 1496
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1497 1498 1499 1500 1501
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1502 1503
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1504
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1505
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1506 1507 1508
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1509 1510 1511 1512 1513

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1514
      phi_kernel_name = kernel_signature_->name;
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1537
                  << phi_kernel_name
1538
                  << ", using_kernel_key:" << *kernel_type_.get();
1539
          auto try_phi_kernel_key =
1540
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1541 1542
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1543 1544
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1545
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1546 1547 1548
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1549
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1550 1551 1552 1553
          }
        }
      }
#endif
1554 1555
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1556
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1557
              phi_kernel_name, phi_kernel_key)));
1558

1559
      if (phi_kernel_->IsValid()) {
1560
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1561 1562
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1563
      } else {
1564
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1565 1566
                << "` not found.";
      }
1567
    } else {
1568
      phi_kernel_name = kernel_signature_->name;
1569 1570 1571 1572

// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
// LibraryType::kMKLDNN and data_layout_ = DataLayout::kMKLDNN. But the default
// values are kPlain, so we need to modify the library_type and data_layout_
1573 1574 1575 1576
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1577
#ifdef PADDLE_WITH_MKLDNN
1578 1579
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1580 1581 1582 1583 1584 1585
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
        kernel_type_->data_layout_ = framework::DataLayout::kMKLDNN;
      }
#endif

1586 1587 1588
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1607
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1608
                  << phi_kernel_name
1609
                  << ", using_kernel_key:" << *kernel_type_.get();
1610
          auto try_phi_kernel_key =
1611
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1612 1613
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1614
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1615
            VLOG(3) << "modify XPU KP kernel in static graph: "
1616
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1617 1618 1619
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1620
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1621 1622 1623 1624
          }
        }
      }
#endif
1625
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1626
    }
1627 1628 1629 1630

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1631
#if defined(PADDLE_WITH_XPU)
1632 1633 1634 1635 1636
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1648
    if (phi_kernel_->IsValid()
1649
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1650 1651
        && !is_xpu_unsupport
#endif
1652 1653 1654
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1655
    ) {
1656
      run_phi_kernel_ = true;
1657 1658 1659
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1670 1671 1672
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1673
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1674
          || is_xpu_unsupport
1675
#endif
1676 1677 1678
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1679
      ) {
1680
        fallback_to_cpu = true;
1681 1682 1683
        auto phi_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), phi_kernel_key, *this);
        phi_kernel_.reset(
1684
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1685
                phi_kernel_name, phi_cpu_kernel_key)));
1686 1687

        dev_ctx = pool.Get(platform::CPUPlace());
1688 1689 1690 1691
        if (phi_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: "
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1692
          run_phi_kernel_ = true;
1693 1694
        }
      }
1695 1696
    }
  }
1697
  if (!run_phi_kernel_) {
1698 1699
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1700
      dev_ctx = pool.Get(kernel_type_->place_);
1701
    }
1702 1703
  }

Y
yuyang18 已提交
1704 1705
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1706 1707
  Scope* transfer_scope = nullptr;
  {
1708
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1709
                                       platform::TracerEventType::OperatorInner,
1710 1711
                                       1,
                                       platform::EventRole::kInnerOp);
1712
    if (need_prepare_data_) {
1713 1714
      transfer_scope = PrepareData(
          scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
1715
    }
1716
  }
Y
yuyang18 已提交
1717 1718 1719 1720
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1721
  if (!all_kernels_must_compute_runtime_shape_) {
1722
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1723
                                       platform::TracerEventType::OperatorInner,
1724 1725
                                       1,
                                       platform::EventRole::kInnerOp);
1726
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1727
    this->Info().infer_shape_(&infer_shape_ctx);
1728 1729 1730
    record_event.End();
    platform::RecordOpInfoSupplement(
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx);
1731
  }
1732 1733 1734 1735 1736

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1737 1738
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1739
  {
1740
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1741
                                       platform::TracerEventType::OperatorInner,
1742 1743
                                       1,
                                       platform::EventRole::kInnerOp);
1744
    if (run_phi_kernel_) {
1745
      phi::KernelContext phi_kernel_context;
1746 1747
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1748 1749 1750
        impl_ =
            new CacheImpl(new phi::KernelContext(),
                          new RuntimeInferShapeContext(*this, *runtime_ctx));
1751
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1752
        (*phi_kernel_)(impl_->getKernelContext());
1753
      } else {
1754
        phi::KernelContext phi_kernel_context;
1755 1756
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1757 1758
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1759
      }
1760 1761 1762 1763
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1764 1765 1766
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
1767
  }
D
dzhwinter 已提交
1768

Y
yuyang18 已提交
1769
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1770
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1771
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1772
  }
1773 1774 1775 1776 1777 1778 1779

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1780 1781 1782 1783 1784 1785 1786 1787
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1788

D
dzhwinter 已提交
1789
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1790
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1791
    dev_ctx->Wait();
1792 1793
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1794 1795
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1796
  }
C
chengduoZH 已提交
1797 1798

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1799
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1800
  }
1801 1802 1803 1804 1805 1806 1807

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1808
}
X
Xin Pan 已提交
1809

1810 1811 1812
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1813 1814 1815

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
1816
// data_layout_ of expected_kernel_key need to be adjusted. There are three
1817
// statements in if condition:
1818 1819 1820
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1821
#ifdef PADDLE_WITH_MKLDNN
1822
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1823 1824 1825 1826 1827 1828
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
    expected_kernel_key.data_layout_ = framework::DataLayout::kMKLDNN;
  }
#endif

1829 1830 1831
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1842 1843 1844
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
1845 1846
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1847
      if (SupportGPU()) {
1848
        auto& dev_ctx = ctx.device_context();
1849
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1850 1851
      }
#endif
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
1871 1872 1873
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1874
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1875 1876 1877
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1878 1879
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
1906 1907 1908
      }
    }
  }
C
cc 已提交
1909 1910
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1911 1912 1913
  return expected_kernel_key;
}

1914
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1915
    const ExecutionContext& ctx) const {
1916 1917 1918
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1919 1920 1921 1922

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1923 1924 1925 1926
  auto phi_kernel_name = kernel_signature_->name;
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
1927

1928 1929 1930 1931
  if (phi_kernel_->IsValid()) {
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << phi_kernel_name
            << " | kernel key: " << phi_kernel_key
            << " | kernel: " << *phi_kernel_;
1932
  } else {
1933
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1934 1935
            << "` not found.";
  }
1936
  return phi_kernel_key;
1937 1938 1939 1940 1941 1942 1943
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
1944 1945
      kernels_iter,
      all_op_kernels.end(),
1946
      platform::errors::Unimplemented(
1947 1948 1949 1950 1951 1952
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1953 1954

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1955

L
Liu Yiqun 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1965
#endif
1966 1967

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1968
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1969 1970 1971
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1972
    VLOG(3) << "fluid missing XPU kernel: " << type_
1973 1974 1975 1976 1977
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1978
#endif
L
Liu-xiandong 已提交
1979 1980

#ifdef PADDLE_WITH_XPU_KP
1981 1982 1983 1984 1985 1986 1987
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
1988
      VLOG(3) << "fluid xpu_kp using rt mode ";
1989 1990
    }
    if (use_xpu_kp_kernel_debug) {
1991
      VLOG(3) << "fluid xpu_kp using debug mode ";
1992 1993 1994
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1995 1996
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1997 1998
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1999
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2000
      // if the fluid do not register related kernel, it can't work and have
2001 2002 2003 2004 2005 2006 2007
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2008
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2009 2010
                << ", using_kernel_key:" << expected_kernel_key;
      }
2011 2012 2013 2014 2015 2016
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2017
      VLOG(3) << "fluid missing XPU kernel: " << type_
2018 2019 2020 2021 2022
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2023 2024 2025
  }
#endif

A
Allen Guo 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2036 2037
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2038
      platform::is_npu_place(expected_kernel_key.place_)) {
2039 2040 2041 2042 2043 2044
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2045 2046 2047
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2048
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2049 2050 2051
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2063 2064 2065
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2066
#endif
2067 2068 2069 2070 2071 2072
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2073

2074 2075 2076 2077 2078
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2079 2080
}

Y
yuyang18 已提交
2081
void OperatorWithKernel::TransferInplaceVarsBack(
2082 2083
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2084 2085
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2086
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2087
    auto* origin_var = scope.FindVar(var_name);
2088 2089 2090
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2091
    auto* original_tensor =
C
chengduo 已提交
2092
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2093
    auto* var = transfer_scope.FindVar(var_name);
2094 2095 2096
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2097
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2098
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2099
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2100 2101 2102 2103 2104
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2105 2106 2107
  }
}

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2137
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2157
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2168
      phi::DenseTensor out;
2169 2170 2171 2172 2173 2174
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2175
Scope* OperatorWithKernel::PrepareData(
2176 2177
    const Scope& scope,
    const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
2178 2179
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
2180
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2181

2182
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2183 2184 2185 2186
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2187 2188
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2189 2190 2191
    }
  }

2192 2193 2194 2195 2196 2197 2198 2199 2200
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2201

Y
yuyang18 已提交
2202
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2203
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2204 2205 2206
        continue;
      }

C
chengduo 已提交
2207
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2208

2209
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
2221
            (var->IsType<phi::DenseTensor>() == true) &&
2222
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
2223
            (paddle::platform::MKLDNNDeviceContext::tls()
2224 2225
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC) &&
            (tensor_in->dims().size() >= 3)) {
2226 2227 2228 2229 2230
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2231
          in_vars->at(i) = trans_var;
2232
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2233
          out->Resize(tensor_in->dims());
2234 2235
          platform::MatchShapeToLayout(
              out, tensor_in->layout(), DataLayout::kNHWC);
2236 2237
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN "
                     "phi::DenseTensor , "
2238
                     "but kNHWC layout"
2239
                  << in_name << " in Operator " << type_;
2240
        } else {
2241 2242
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2243 2244 2245 2246 2247
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2248 2249 2250 2251
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
          kernel_type_for_var.data_type_ != expected_kernel_key.data_type_;
      bool need_trans_layout = NeedTransformLayout(
          kernel_type_for_var.data_layout_, expected_kernel_key.data_layout_);
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
            platform::places_are_same_class(kernel_type_for_var.place_,
                                            expected_kernel_key.place_)) {
          continue;
        }
      }
Y
yuyang18 已提交
2265

2266
      std::unique_ptr<OpKernelType> new_expected_kernel_key = nullptr;
2267 2268
      if (run_phi_kernel_ && in_def != nullptr &&
          in_def->backend != phi::Backend::ALL_BACKEND) {
2269 2270 2271
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
             (in_def->backend != phi::Backend::GPUDNN ||
2272 2273
              tensor_backend != phi::Backend::GPU) &&
             (in_def->backend != phi::Backend::KPS ||
2274 2275 2276
              tensor_backend != phi::Backend::XPU) &&
             (in_def->backend != phi::Backend::ONEDNN ||
              tensor_backend != phi::Backend::CPU)) ||
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
          new_expected_kernel_key = std::make_unique<OpKernelType>(
              expected_kernel_key.data_type_,
              phi::TransToPhiPlace(in_def->backend),
              expected_kernel_key.data_layout_,
              expected_kernel_key.library_type_,
              expected_kernel_key.customized_type_value_);
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2291 2292
      }

M
minqiyang 已提交
2293
      VLOG(3) << "Transform Variable " << var_name << " from "
2294 2295 2296
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2297

H
HongyuJia 已提交
2298 2299 2300
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2301
      // We use a thread_local cache to fix that issue, the key in the cache is
2302 2303 2304 2305 2306
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2307 2308
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2309
      // variables, that behavior a lot different.
2310 2311 2312 2313 2314 2315
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
          if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
               platform::is_gpu_place(new_expected_kernel_key->place_))) {
            new_scope = TryCreateTransferScope(
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
        } else if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
                    platform::is_gpu_place(expected_kernel_key.place_))) {
          new_scope = TryCreateTransferScope(
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2330
      }
2331

2332
      if (!new_scope) {
Y
yuyang18 已提交
2333 2334
        new_scope = &scope.NewScope();
      }
2335 2336 2337 2338
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
2339
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
2340 2341
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
2342
      if (enable_cache_runtime_context_) {
2343 2344
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2345 2346

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2347
      auto* trans_var = new_scope->Var(var_name);
2348
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2349 2350 2351 2352 2353 2354 2355

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2356
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2366
      phi::DenseTensor out;
2367 2368 2369 2370 2371
      TransformData(new_expected_kernel_key ? *new_expected_kernel_key
                                            : expected_kernel_key,
                    kernel_type_for_var,
                    *tensor_in,
                    &out);
Y
yuyang18 已提交
2372 2373
      SetTensorToVariable(*var, out, trans_var);
    }
2374 2375 2376 2377
  };

  if (run_phi_kernel_) {
    const auto& input_names = kernel_signature_->input_names;
2378
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
#ifdef PADDLE_WITH_MKLDNN
    // For input that is Extra, only MKLDNN will use Extra Inputs
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      std::vector<Variable*>& input_vars = iter->second;
      prepare_input_data(input_name, &input_vars, nullptr, should_skip_input);
    }
#endif
2414 2415 2416 2417 2418 2419 2420 2421 2422
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2423
  }
L
Leo Chen 已提交
2424

2425 2426 2427 2428 2429 2430
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2431 2432 2433 2434 2435 2436

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2437 2438
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2439 2440 2441

  return new_scope;
}
Q
Qiao Longfei 已提交
2442

2443
void OperatorWithKernel::ParseInputDataType(
2444 2445
    const Variable* var,
    const std::string& name,
2446 2447
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2448 2449 2450
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2451 2452
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2453 2454
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      PADDLE_ENFORCE_EQ(
          sp_t->initialized(),
          true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(),
                                            name));
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2466 2467 2468 2469 2470 2471 2472 2473 2474
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
2475 2476 2477 2478 2479 2480 2481
      PADDLE_ENFORCE_EQ(t->IsInitialized(),
                        true,
                        platform::errors::InvalidArgument(
                            "The %s Op's Input Variable `%s` "
                            "contains uninitialized phi::DenseTensor.",
                            Type(),
                            name));
2482 2483 2484 2485 2486 2487
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2488 2489
    const std::vector<Variable*>& vars,
    const std::string& name,
2490
    proto::VarType::Type* data_type) const {
2491
  proto::VarType::Type default_data_type =
2492 2493 2494 2495
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2496 2497 2498
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2499 2500
      } else if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2501 2502
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2526
      } else if (var->IsType<LoDTensorArray>()) {
2527 2528 2529 2530
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2531 2532
          }
        }
2533 2534
      }
      if (t != nullptr) {
2535 2536 2537 2538 2539 2540 2541
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2542 2543
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2544 2545 2546 2547 2548 2549 2550
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2551 2552 2553
                           Type(),
                           name,
                           DataTypeToString(tmp),
2554
                           DataTypeToString(*data_type)));
2555 2556 2557 2558 2559 2560
        *data_type = tmp;
      }
    }
  }
}

2561
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2562
    const ExecutionContext& ctx) const {
2563 2564 2565
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2566 2567 2568 2569 2570 2571
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2572
  }
2573
  PADDLE_ENFORCE_NE(
2574 2575
      data_type,
      dafault_data_type,
2576 2577
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2578 2579 2580 2581 2582 2583 2584 2585
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2586 2587 2588 2589 2590
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2591
  PADDLE_ENFORCE_NE(
2592 2593
      data_type,
      dafault_data_type,
2594 2595
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2596
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2597
          "LoDTensorArray.",
2598 2599
          name,
          Type()));
2600
  return data_type;
Y
Yu Yang 已提交
2601
}
2602

2603
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2616 2617 2618
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2619 2620
  } else if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2621 2622
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2623 2624 2625 2626
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2627 2628 2629 2630 2631 2632 2633
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2634
      platform::errors::InvalidArgument(
2635 2636 2637 2638 2639
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2651 2652
    const ExecutionContext& ctx,
    const std::string& name1,
2653 2654 2655 2656 2657 2658
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2659 2660
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2661 2662 2663 2664 2665 2666 2667

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2668 2669 2670 2671 2672 2673
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
2674
    const std::string& var_name,
2675
    const phi::DenseTensor& tensor,
2676
    const OpKernelType& expected_kernel_type) const {
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
  if ((expected_kernel_type.data_layout_ == phi::DataLayout::kMKLDNN) &&
      (tensor.layout() != phi::DataLayout::kMKLDNN) &&
      paddle::platform::MKLDNNDeviceContext::tls()
              .get_cur_paddle_data_layout() == phi::DataLayout::kNHWC) {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   phi::DataLayout::kNHWC);
  }
#endif
2690 2691
  return OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
2692 2693
}

2694
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2695
    const ExecutionContext& ctx) const {
2696
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2697
  if (arg_map_fn_ == nullptr) {
2698 2699 2700 2701
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2702 2703 2704
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2705 2706 2707 2708
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2709 2710
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2711 2712
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
static void SetDnnAttrIntoDeviceContext(
    phi::DeviceContext* dev_ctx,
    const Attribute& attr,
    const std::string& attr_name,
    const operators::ExtraAttrPropertySet& attr_propertys) {
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::ONEDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to OneDNNContext.";
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::FLOAT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(float, attr));
        break;
      case proto::AttrType::INT:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::STRING:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(std::string, attr));
        break;
      case proto::AttrType::INTS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<int>, attr));
        break;
      case proto::AttrType::FLOATS:
        one_dnn_ctx->SetDnnAttr(attr_name,
                                PADDLE_GET_CONST(std::vector<float>, attr));
        break;
      case proto::AttrType::BOOLEAN:
        one_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
#ifdef PADDLE_WITH_CUDA
  if (phi::GPUContext::classof(dev_ctx) &&
      attr_propertys.Support(operators::ExtraAttrProperty::GPUDNN)) {
    VLOG(4) << "Runtime attr `" << attr_name << "` is passed to GPUDNNContext.";
    phi::GPUContext* gpu_dnn_ctx = static_cast<phi::GPUContext*>(dev_ctx);
    switch (AttrTypeID(attr)) {
      case proto::AttrType::INT:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(int, attr));
        break;
      case proto::AttrType::BOOLEAN:
        gpu_dnn_ctx->SetDnnAttr(attr_name, PADDLE_GET_CONST(bool, attr));
        break;
      default:
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported Attribute value type `%s` for phi.",
            platform::demangle(attr.type().name())));
    }
  }
#endif
}

2772
void OperatorWithKernel::BuildPhiKernelContext(
2773 2774
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
2775 2776
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
2777

2778 2779 2780
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2781

2782 2783 2784
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
2785

2786 2787 2788 2789 2790 2791 2792 2793 2794
#if defined(PADDLE_WITH_MKLDNN)
  if (phi::OneDNNContext::classof(dev_ctx)) {
    // Onednn holds this op's variable's name and init them here.
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    one_dnn_ctx->SetInputsName(Inputs());
    one_dnn_ctx->SetOutputsName(Outputs());
  }
#endif

2795 2796
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
2797 2798 2799
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
2800 2801
                        input_names.size(),
                        input_defs.size()));
2802

2803 2804
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
2805 2806 2807
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
2808 2809
                        output_names.size(),
                        output_defs.size()));
2810

2811 2812
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
2813 2814 2815
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
2816 2817
                        attr_names.size(),
                        attr_defs.size()));
2818 2819

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2820
    auto it = ctx.inputs.find(input_names[i]);
2821 2822 2823

    // calcute the start and end index of the input tensors
    size_t start_idx =
2824
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
2825
    // deal with optional here
2826
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2827
        (input_defs[i].type_index ==
2828
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
2829
         input_defs[i].type_index ==
2830
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
2831
         input_defs[i].type_index ==
2832 2833
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
2834
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
2835
      auto end_idx = start_idx + 1;
2836 2837
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
2838

H
hong 已提交
2839 2840 2841 2842
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2843
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2844
      const phi::TensorBase* tensor_in = nullptr;
2845
      auto* var = ins_vector[offset];
2846 2847
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
2848
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2849 2850
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2851
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2852 2853 2854
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2855
      } else if (var->IsType<framework::LoDTensorArray>()) {
2856
        need_prepare_phi_data_ = true;
2857 2858
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2859 2860 2861 2862
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2863
      }
2864
    }
2865
    // Note: here cannot deal with vector<LoDTensorArray> input
2866
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2867
  }
2868
  VLOG(4) << "Done inputs";
2869 2870

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2871
    auto it = ctx.outputs.find(output_names[i]);
2872
    size_t start_idx =
2873
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2874 2875 2876 2877 2878 2879

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
2880
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
2881
      auto end_idx = start_idx + 1;
2882 2883
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
2884 2885 2886 2887
      continue;
    }
    auto& outs_vector = it->second;

2888
    size_t end_idx = start_idx + outs_vector.size();
2889 2890

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2891
      phi::TensorBase* tensor_out = nullptr;
2892
      auto* var = outs_vector[offset];
2893
      if (var) {
2894 2895
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
2896
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2897 2898
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2899
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2900 2901 2902
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2903
        } else if (var->template IsType<framework::LoDTensorArray>()) {
2904
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
2905 2906
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
2907
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2908 2909 2910 2911 2912
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2913
      } else {
2914
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2915
      }
2916
    }
2917 2918
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
2919
  }
2920
  VLOG(4) << "Done outputs";
2921 2922

  for (size_t i = 0; i < attr_names.size(); ++i) {
2923 2924
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
2925 2926
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
2927 2928 2929 2930 2931 2932 2933
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
2934
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2935
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
2936
              break;
2937 2938 2939 2940
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
2941
            case proto::AttrType::INT:
2942
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2943
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
2944
              break;
2945 2946 2947 2948
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
2949
            case proto::AttrType::STRING:
2950
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
2951
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
2952
              break;
2953 2954 2955 2956
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
2957 2958 2959 2960 2961 2962 2963
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
2964
          need_prepare_phi_data_ = true;
2965
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
2966
          phi_kernel_context->EmplaceBackAttr(std::move(
2967
              experimental::MakePhiScalarFromVar(*ins_vector.front())));
2968
        }
2969 2970 2971 2972 2973
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
2974
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2975
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
2976 2977
              break;
            case proto::AttrType::LONGS:
2978
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2979
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2980 2981
              break;
            case proto::AttrType::INT:
2982
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2983
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
2984 2985
              break;
            case proto::AttrType::LONG:
2986
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2987
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
2988 2989 2990 2991 2992 2993 2994 2995
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
2996
          need_prepare_phi_data_ = true;
2997 2998
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
2999
            phi_kernel_context->EmplaceBackAttr(std::move(
3000 3001
                experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
          } else {  // ShapeTensorList
3002
            phi_kernel_context->EmplaceBackAttr(std::move(
3003 3004
                experimental::MakePhiIntArrayFromVarList(ins_vector)));
          }
3005
        }
3006 3007 3008
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
3009 3010
            attr_iter,
            Attrs().end(),
3011 3012 3013 3014 3015 3016
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3017
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
3018 3019 3020 3021 3022
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3023
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3024 3025 3026
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3027
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
3028 3029 3030 3031 3032
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3033
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3034 3035 3036
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3037
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
3038 3039 3040 3041 3042
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3043
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3044 3045 3046
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
3047
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
3048 3049 3050 3051 3052
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3053
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3054 3055 3056
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
3057
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
3058 3059 3060 3061 3062
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
3063
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
3064 3065 3066 3067 3068
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
3069 3070
                attr_names[i]));
        }
3071 3072
      } break;
      default: {
3073
        if (attr_iter == Attrs().end()) {
3074
          // TODO(chenweihang): remove this backup searching later
3075 3076 3077 3078 3079 3080 3081 3082 3083
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3084 3085
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3086
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3087
                PADDLE_GET_CONST(float, attr_iter->second));
3088
            break;
3089 3090 3091 3092
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3093
          case phi::AttributeType::INT32:
3094
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3095
                PADDLE_GET_CONST(int, attr_iter->second));
3096 3097
            break;
          case phi::AttributeType::BOOL:
3098
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3099
                PADDLE_GET_CONST(bool, attr_iter->second));
3100 3101
            break;
          case phi::AttributeType::INT64:
3102
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3103
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3104 3105
            break;
          case phi::AttributeType::INT32S:
3106
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3107
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3108 3109 3110 3111
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3112
                    PADDLE_GET_CONST(int, attr_iter->second)));
3113
            phi_kernel_context->EmplaceBackAttr(data_type);
3114 3115
          } break;
          case phi::AttributeType::STRING:
3116
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3117
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3118 3119 3120 3121
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3122
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3123
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3124 3125 3126
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3127
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3128 3129
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3130
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3141
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3142
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3143 3144
            break;
          case phi::AttributeType::STRINGS:
3145
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3146
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3147 3148 3149 3150 3151 3152
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3153
        }
3154 3155 3156
      }
    }
  }
3157
  VLOG(4) << "Done attributes";
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

  // For compatible with Op with extra attrs for specific backend
#if defined(PADDLE_WITH_MKLDNN) || defined(PADDLE_WITH_CUDA)
  auto& runtime_attrs = RuntimeAttrs();
  for (const auto& attr_iter : runtime_attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
    auto attr_propertys = paddle::operators::GetExtraAttrPropertys(attr_name);
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  // TODO(chenweihang): Since the pass will still `SetAttr` in the OpDesc,
  // we try to add these Attrs to the RuntimeAttrs, but these OpDesc will lose
  // the RuntimeAttrs information in the process of converting the Graph to
  // the Program, so additional record configuration will be introduced,
  // which increases the The cost of development and understanding, so we
  // still use Attrs to get and the attributes set by these passes from Attrs
  // for the time being. In the future, it is necessary to clarify the
  // positioning of RuntimeAttrs and expand related functions.
  auto& attrs = Attrs();
  for (const auto& attr_iter : attrs) {
    auto& attr_name = attr_iter.first;
    auto& attr = attr_iter.second;
    auto attr_propertys = paddle::operators::GetExtraAttrPropertys(attr_name);
    SetDnnAttrIntoDeviceContext(dev_ctx, attr, attr_name, attr_propertys);
  }
  VLOG(4) << "Done runtime attributes";
#endif

// For compatible with Op with extra input for onednn backend
#ifdef PADDLE_WITH_MKLDNN
  if (phi::OneDNNContext::classof(dev_ctx)) {
    phi::OneDNNContext* one_dnn_ctx = static_cast<phi::OneDNNContext*>(dev_ctx);
    auto& extra_input_names =
        paddle::operators::ExtraInfoUtils::Instance().GetExtraInputNamesMap(
            Type());
    for (const auto& input_name : extra_input_names) {
      auto it = ctx.inputs.find(input_name);
      if (it == ctx.inputs.end() || it->second.size() == 0) {
        one_dnn_ctx->SetDnnInput(input_name, nullptr);
      } else {
        auto ins_vector = it->second;
        PADDLE_ENFORCE_EQ(
            ins_vector.size(),
            1UL,
            phi::errors::InvalidArgument(
                "OneDNN's extra input only allows one input tensor."));
        auto* var = ins_vector[0];
        PADDLE_ENFORCE_EQ(var->IsType<phi::DenseTensor>(),
                          true,
                          phi::errors::InvalidArgument(
                              "OneDNN's extra input only can be DenseTensor."));
        one_dnn_ctx->SetDnnInput(input_name, &(var->Get<phi::DenseTensor>()));
      }
    }
  }
  VLOG(4) << "Done runtime extra inputs";
#endif
3215 3216
}

Q
Qiao Longfei 已提交
3217
}  // namespace framework
L
liaogang 已提交
3218
}  // namespace paddle