operator.cc 116.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_transform.h"
22
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
23
#include "paddle/fluid/framework/details/nan_inf_utils.h"
24
#include "paddle/fluid/framework/op_call_stack.h"
25
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/operators/isfinite_op.h"
31
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
32
#include "paddle/fluid/platform/enforce.h"
33
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
34
#include "paddle/fluid/platform/profiler/event_tracing.h"
35
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37
#include "paddle/phi/common/scalar.h"
38
#include "paddle/phi/core/kernel_context.h"
39 40
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
41

42
namespace phi {
43
class DenseTensor;
44
}  // namespace phi
45

46
#ifdef PADDLE_WITH_XPU
47 48
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
49
#endif
Q
Qiao Longfei 已提交
50

51 52
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
53
#include "paddle/fluid/platform/mkldnn_op_list.h"
54 55
#endif

F
fwenguang 已提交
56 57 58 59
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
60
DECLARE_bool(benchmark);
61
DECLARE_bool(check_nan_inf);
62
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
63
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
64
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
65

Q
Qiao Longfei 已提交
66 67 68
namespace paddle {
namespace framework {

69 70 71 72 73 74
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
75

76
static DDim GetDimsDebug(const Scope& scope,
77
                         const std::string& name,
78
                         bool get_actual_dim = false) {
79
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
80 81
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
82 83
  }

84 85
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
86
    return tensor.dims();
87
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
88
    if (get_actual_dim) {
89
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
90
    } else {
91
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
92
    }
S
Steffy-zxf 已提交
93 94
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
95 96 97 98 99
  } else {
    return DDim({-1});
  }
}

100
static bool VarInited(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
101 102 103 104 105
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

106
static std::string GetDtype(const Scope& scope, const std::string& name) {
D
dzhwinter 已提交
107 108 109 110
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
111

112 113
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
114
    if (UNLIKELY(!tensor.IsInitialized())) {
115 116
      return "";
    }
117
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
118 119
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
120 121 122
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
123
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
124
    }
S
Steffy-zxf 已提交
125 126
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
127 128 129 130 131
  } else {
    return "";
  }
}

132
static std::string GetPlace(const Scope& scope, const std::string& name) {
L
Leo Chen 已提交
133 134 135 136 137 138 139 140 141 142
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

143 144
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
L
Leo Chen 已提交
145 146 147 148
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
149 150
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
151 152 153 154 155 156 157 158 159 160
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

161
static int GetRowSize(const Scope& scope, const std::string& name) {
162 163 164 165 166
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

167 168
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
169 170 171 172 173
  }

  return -1;
}

174
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
175 176 177 178 179 180 181
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

182 183
  if (var->IsType<phi::DenseTensor>()) {
    const phi::DenseTensor& tensor = var->Get<phi::DenseTensor>();
M
minqiyang 已提交
184
    return tensor.lod();
Q
Qiao Longfei 已提交
185 186 187 188 189
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
190 191 192 193 194
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
195
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
196 197 198 199 200 201
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
202
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
203 204 205 206 207 208
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

209
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
210 211 212
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
213
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
214 215 216 217
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
218
#else
219
      auto dev_id = place.device;
P
peizhilin 已提交
220
      platform::SetDeviceId(dev_id);
221 222 223
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
224 225 226 227
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
228
#else
229
      auto dev_id = place.device;
230
      platform::SetXPUDeviceId(dev_id);
231 232 233 234 235 236 237 238
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
239
      auto dev_id = place.device;
240
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
241 242 243 244 245 246 247 248
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
249
      auto dev_id = place.device;
F
fwenguang 已提交
250
      platform::SetMLUDeviceId(dev_id);
251 252 253 254 255 256 257 258
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
259
      phi::DeviceManager::SetDevice(place);
260
#endif
P
peizhilin 已提交
261
    }
P
peizhilin 已提交
262

263
    {
264 265 266
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
267
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
268
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
269 270
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
271 272
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
273
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
274
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
275 276
      RunImpl(scope, place);
    }
277

Z
Zhang Ting 已提交
278
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
279
  } catch (platform::EnforceNotMet& exception) {
280
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
281
    throw std::move(exception);
282 283 284 285 286 287
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
288
  } catch (...) {
289
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
290
    std::rethrow_exception(std::current_exception());
291
  }
292 293
}

294
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
295
  return inputs_.find(name) != inputs_.end();
296 297
}

298
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
299
  auto& ins = Inputs(name);
300
  PADDLE_ENFORCE_LE(
301 302
      ins.size(),
      1UL,
303
      platform::errors::InvalidArgument(
304 305
          "Operator %s's input %s should contain only one variable.",
          type_,
306
          name));
Y
Yu Yang 已提交
307
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
308 309
}

Y
Yu Yang 已提交
310 311
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
312
  auto it = inputs_.find(name);
313
  PADDLE_ENFORCE_NE(
314 315 316 317
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
318
  return it->second;
Y
Yan Chunwei 已提交
319 320
}

321
bool OperatorBase::HasOutputs(const std::string& name) const {
322
  if (outputs_.find(name) != outputs_.end()) {
323 324 325 326 327 328
    return true;
  } else {
    return false;
  }
}

329
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
330
  auto& outs = Outputs(name);
331
  PADDLE_ENFORCE_LE(
332 333
      outs.size(),
      1UL,
334
      platform::errors::InvalidArgument(
335 336
          "Operator %s's output %s should contain only one variable.",
          type_,
337
          name));
Y
Yu Yang 已提交
338
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
339 340
}

Y
Yu Yang 已提交
341 342
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
343
  auto it = outputs_.find(name);
344
  PADDLE_ENFORCE_NE(
345 346
      it,
      outputs_.end(),
347 348
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
349
  return it->second;
Y
Yan Chunwei 已提交
350 351
}

352
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
353
  std::stringstream ss;
Y
Yu Yang 已提交
354
  ss << "Op(" << type_ << "), inputs:{";
355

356
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
357 358
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
359 360
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
361 362
  }

Y
Yu Yang 已提交
363 364
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
365 366
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
367 368
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
369 370
      auto var_name = input.second[i];
      ss << var_name;
371
      if (scope) {
Q
Qiao Longfei 已提交
372 373 374 375 376 377 378
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
379 380 381
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
382
          ss << ":" << dtype;
383 384
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
385
          ss << "(" << GetPlace(*scope, var_name) << ")";
386
        }
387
      }
Y
Yu Yang 已提交
388 389 390
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
391
    }
Y
Yu Yang 已提交
392
    ss << "]";
Y
Yu Yang 已提交
393 394
    ++it;
    if (it != inputs_.end()) {
395 396
      ss << ", ";
    }
Q
Qiao Longfei 已提交
397
  }
Y
Yu Yang 已提交
398
  ss << "}, outputs:{";
Y
Yu Yang 已提交
399 400
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
401 402
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
403 404
      auto var_name = output.second[i];
      ss << var_name;
405
      if (scope) {
Q
Qiao Longfei 已提交
406 407 408 409 410 411 412
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
413 414
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
415 416
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
417
          ss << "(" << GetPlace(*scope, var_name) << ")";
418
        }
419
      }
Y
Yu Yang 已提交
420 421 422
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
423
    }
Y
Yu Yang 已提交
424
    ss << "]";
Y
Yu Yang 已提交
425 426
    ++it;
    if (it != outputs_.end()) {
427 428
      ss << ", ";
    }
Q
Qiao Longfei 已提交
429
  }
Y
Yu Yang 已提交
430
  ss << "}.";
Q
Qiao Longfei 已提交
431 432 433
  return ss.str();
}

Y
Yu Yang 已提交
434
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
435 436
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
437
                           const AttributeMap& attrs)
S
sneaxiy 已提交
438 439 440 441 442 443
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
444 445 446 447 448 449 450 451
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
452
  // In OperatorBase level, all attributes with VarDesc type will be considered
453 454 455 456 457 458
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
459
}
460

Q
qijun 已提交
461 462
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
463
  for (auto& o : inputs_) {
Q
qijun 已提交
464 465 466 467 468 469
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
470 471 472 473 474 475 476 477 478 479
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
480
  auto& info = Info();
Y
Yu Yang 已提交
481 482

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
483
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
484 485 486 487 488 489 490 491 492
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
493 494
}

495
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
496
  if (info_ == nullptr || info_->proto_ == nullptr) return;
497

S
sneaxiy 已提交
498
  for (auto& in : info_->Proto().inputs()) {
499
    if (!in.dispensable() && !in.extra()) {
500
      PADDLE_ENFORCE_NE(
501 502 503 504
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
505
    }
506 507
  }

S
sneaxiy 已提交
508
  for (auto& out : info_->Proto().outputs()) {
509
    if (!out.dispensable() && !out.extra()) {
510
      PADDLE_ENFORCE_NE(
511 512 513 514
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
515
    }
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
531

532 533
const phi::DenseTensor* GetLoDTensorOrSelectedRowsValueFromVar(
    const Variable& var) {
534 535
  if (var.IsType<phi::DenseTensor>()) {
    return static_cast<const phi::DenseTensor*>(&(var.Get<phi::DenseTensor>()));
536 537
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
538
  } else {
539
    PADDLE_THROW(platform::errors::InvalidArgument(
540
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
541
        ToTypeName(var.Type())));
Q
QI JUN 已提交
542 543 544
  }
}

545
phi::DenseTensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
546 547
  if (var->IsType<phi::DenseTensor>()) {
    return var->GetMutable<phi::DenseTensor>();
548 549
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
550
  } else {
551
    PADDLE_THROW(platform::errors::InvalidArgument(
552
        "Variable type is %s, expect phi::DenseTensor or SelectedRows.",
553
        ToTypeName(var->Type())));
Q
QI JUN 已提交
554 555 556
  }
}

557
bool ExecutionContext::HasInput(const std::string& name) const {
558
  auto* var = InputVar(name);
559 560 561
  return var != nullptr;
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

576
bool ExecutionContext::HasOutput(const std::string& name) const {
577
  auto* var = OutputVar(name);
578 579 580
  return var != nullptr;
}

X
Xin Pan 已提交
581
const Variable* ExecutionContext::InputVar(const std::string& name) const {
582 583
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
584 585 586
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

587
  PADDLE_ENFORCE_LE(
588 589
      it->second.size(),
      1UL,
590
      platform::errors::InvalidArgument(
591
          "Operator %s's input %s should contain only one variable.",
592 593
          op_.Type(),
          name));
X
Xin Pan 已提交
594 595 596
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
597
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
598 599 600
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

601
  PADDLE_ENFORCE_LE(
602 603
      it->second.size(),
      1UL,
604 605
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
606 607
          op_.Type(),
          name));
X
Xin Pan 已提交
608 609 610
  return it->second.empty() ? nullptr : it->second[0];
}

611
template <>
612 613
const std::vector<const phi::DenseTensor*>
ExecutionContext::MultiInput<phi::DenseTensor>(const std::string& name) const {
614 615
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
616 617
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
618 619
    return {};
  }
620
  std::vector<const phi::DenseTensor*> res;
X
Xin Pan 已提交
621
  res.reserve(vars.size());
622 623 624
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
625
                 [&](const Variable* var) -> const phi::DenseTensor* {
X
Xin Pan 已提交
626
                   if (var == nullptr) return nullptr;
627 628 629 630 631 632 633 634
                   PADDLE_ENFORCE_EQ(
                       var->IsType<phi::DenseTensor>(),
                       true,
                       platform::errors::InvalidArgument(
                           "Input variable should be phi::DenseTensor, "
                           "but the received type is %s.",
                           ToTypeName(var->Type())));
                   return &(var->Get<phi::DenseTensor>());
X
Xin Pan 已提交
635 636 637 638
                 });
  return res;
}

639
template <>
640
std::vector<phi::DenseTensor*> ExecutionContext::MultiOutput<phi::DenseTensor>(
641
    const std::string& name) const {
H
hong 已提交
642 643 644
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
645 646
    return {};
  }
647
  std::vector<phi::DenseTensor*> res;
648
  res.reserve(vars.size());
649 650 651
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
652
                 [&](Variable* var) -> phi::DenseTensor* {
653
                   return var == nullptr ? nullptr
654
                                         : var->GetMutable<phi::DenseTensor>();
655
                 });
656 657 658
  return res;
}

Y
Yu Yang 已提交
659
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
660
  // check in new Function kernel first
661
  bool has_phi_kernel = false;
662
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
663
  auto kernel_key_map =
664
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
665
  for (auto& kernel : kernel_key_map) {
666
    has_phi_kernel = true;
667
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
668 669 670 671
      return true;
    }
  }

Y
Yu Yang 已提交
672 673
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
674 675 676 677 678 679 680 681 682 683 684 685 686
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
687 688 689
      return true;
    }
  }
H
hong 已提交
690

Y
Yu Yang 已提交
691 692 693
  return false;
}

694 695
class RuntimeInferShapeContext : public InferShapeContext {
 public:
696
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
697
      : op_(op), ctx_(ctx) {}
698 699

  bool HasInput(const std::string& name) const override {
700
    // has only one input
X
Xin Pan 已提交
701
    const auto& ins = ctx_.inputs;
702 703
    auto it = ins.find(name);
    if (it == ins.end()) {
704 705
      return false;
    }
706
    const auto& in = it->second;
X
Xin Pan 已提交
707
    if (in.size() == 0) return false;
708
    PADDLE_ENFORCE_EQ(
709 710
        in.size(),
        1UL,
711 712
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
713
    return in[0] != nullptr;
714 715 716
  }

  bool HasOutput(const std::string& name) const override {
717
    // has only one output
X
Xin Pan 已提交
718
    const auto& outs = ctx_.outputs;
719 720
    auto it = outs.find(name);
    if (it == outs.end()) {
721 722
      return false;
    }
723
    const auto& out = it->second;
X
Xin Pan 已提交
724
    if (out.size() == 0) {
725 726
      return false;
    }
727
    PADDLE_ENFORCE_EQ(
728 729
        out.size(),
        1UL,
730 731
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
732
    return out[0] != nullptr;
733 734
  }

735 736 737 738
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

739
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
740 741
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
742
    if (it == ins.end() || it->second.empty()) {
743 744
      return false;
    }
X
Xin Pan 已提交
745 746
    for (auto& input : it->second) {
      if (input == nullptr) {
747 748 749 750 751 752
        return false;
      }
    }
    return true;
  }

753 754
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
755 756
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
757
    if (it == outs.end() || it->second.empty()) {
758 759
      return false;
    }
Y
YuanRisheng 已提交
760
    if (!allow_null) {
761 762
      for (auto& output : it->second) {
        if (output == nullptr) return false;
763 764
      }
    }
Y
YuanRisheng 已提交
765
    return true;
766 767
  }

768 769 770
  AttrReader Attrs() const override {
    return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
  }
771

H
hong 已提交
772
  std::vector<std::string> Inputs(const std::string& name) const override {
773 774 775
    return op_.Inputs(name);
  }

H
hong 已提交
776
  std::vector<std::string> Outputs(const std::string& name) const override {
777 778 779
    return op_.Outputs(name);
  }

780 781 782
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
783 784
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
785 786 787
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
788 789 790
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
791 792 793 794 795 796 797
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
798 799
        idx,
        op_proto->outputs().size(),
800 801 802
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
803 804 805
            op_.Type(),
            idx,
            op_proto->outputs().size()));
806 807 808
    return op_proto->outputs()[idx].name();
  }

809 810 811
  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
812
                size_t j = 0) override {
X
Xin Pan 已提交
813 814
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
815
    PADDLE_ENFORCE_NE(
816 817
        in_it,
        ctx_.inputs.end(),
818 819
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
820 821
        out_it,
        ctx_.outputs.end(),
822
        platform::errors::NotFound("Output %s does not exist.", out));
823 824
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
825 826 827
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
828 829 830 831
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
832 833 834
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
835 836
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
837 838 839

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
840

841
    PADDLE_ENFORCE_EQ(
842 843
        in_var->Type(),
        out_var->Type(),
844
        platform::errors::InvalidArgument(
845 846
            "The type of input (%s) and output (%s) are inconsistent.",
            in,
847
            out));
848

849 850 851
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
852 853 854
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
855 856 857
    } else if (in_var->IsType<phi::DenseTensor>()) {
      auto& in_lod_tensor = in_var->Get<phi::DenseTensor>();
      auto* out_lod_tensor = out_var->GetMutable<phi::DenseTensor>();
858 859
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
860
      PADDLE_THROW(platform::errors::Unimplemented(
861
          "Currently, the input type of ShareDim only can be phi::DenseTensor "
862
          "or SelectedRows."));
863 864 865
    }
  }

H
hong 已提交
866 867 868 869
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
870 871
    PADDLE_ENFORCE_NE(in_it,
                      ctx_.inputs.end(),
H
hong 已提交
872 873 874
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
875 876 877 878
        out_it,
        ctx_.outputs.end(),
        platform::errors::NotFound(
            "Output [%s] found error in Op [%s]", out, op_.Type()));
H
hong 已提交
879 880 881 882 883

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
884 885
        in_var_list.size(),
        out_var_list.size(),
H
hong 已提交
886
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
887
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
888 889 890 891 892 893 894 895 896 897
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
898
      if (!in_var->IsType<phi::DenseTensor>()) return;
H
hong 已提交
899
      Variable* out_var = out_var_list[i];
900 901 902 903 904 905 906 907 908
      PADDLE_ENFORCE_EQ(
          out_var->IsType<phi::DenseTensor>(),
          true,
          platform::errors::PreconditionNotMet(
              "The %d-th output of Output(%s) must be phi::DenseTensor.",
              i,
              out_var_names[i]));
      auto& in_tensor = in_var->Get<phi::DenseTensor>();
      auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
H
hong 已提交
909 910 911 912 913 914 915 916
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

917 918 919
  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
Q
Qiao Longfei 已提交
920
                size_t j = 0) const override {
X
Xin Pan 已提交
921 922
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
923
    PADDLE_ENFORCE_NE(
924 925
        in_it,
        ctx_.inputs.end(),
926 927
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
928 929
        out_it,
        ctx_.outputs.end(),
930
        platform::errors::NotFound("Output %s does not exist.", out));
931 932
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
933 934 935
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
936 937 938 939
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
940 941 942
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
943 944
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
945 946

    Variable* in_var = in_it->second.at(i);
947
    if (!in_var->IsType<phi::DenseTensor>()) return;
X
Xin Pan 已提交
948
    Variable* out_var = out_it->second.at(j);
949
    PADDLE_ENFORCE_EQ(
950
        out_var->IsType<phi::DenseTensor>(),
951
        true,
952
        platform::errors::InvalidArgument(
953 954 955 956 957
            "The %zu-th output of Output(%s) must be phi::DenseTensor.",
            j,
            out));
    auto& in_tensor = in_var->Get<phi::DenseTensor>();
    auto* out_tensor = out_var->GetMutable<phi::DenseTensor>();
Q
Qiao Longfei 已提交
958
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
959

M
mozga-intel 已提交
960 961
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
962
// Shall we have a better method to shared info between in/out phi::DenseTensor?
M
mozga-intel 已提交
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
979 980
  }

981
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
982
    PADDLE_THROW(platform::errors::PreconditionNotMet(
983
        "GetLoDLevel is only used in compile time. The calculation of "
984
        "output's actual lod is different among operators so that should be "
985
        "set in the runtime kernel."));
986 987
  }

988 989
  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
990
                   size_t j = 0) const override {
991
    PADDLE_THROW(platform::errors::PreconditionNotMet(
992
        "SetLoDLevel is only used in compile time. The calculation of "
993
        "output's actual lod is different among operators so that should be "
994
        "set in the runtime kernel."));
C
chengduo 已提交
995 996
  }

997 998
  bool IsRuntime() const override { return true; }

999 1000 1001 1002 1003
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
1004
               phi::DataLayout::kMKLDNN));
1005
    } catch (const std::bad_cast& exp) {
1006 1007 1008 1009
      return false;
    }
  }

1010
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
1011
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
1012
  GetInputVarPtrs(const std::string& name) const override {
1013
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
1014
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
1015 1016 1017 1018 1019
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
1020
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
1021
  GetOutputVarPtrs(const std::string& name) const override {
1022
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
1023
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
1024 1025 1026 1027 1028
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
1029 1030
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
1031
    PADDLE_ENFORCE_EQ(
1032 1033
        vars.size(),
        1UL,
1034 1035
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
1036 1037
            name,
            vars.size()));
X
Xin Pan 已提交
1038 1039 1040 1041 1042 1043 1044 1045
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

1046 1047 1048 1049
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
1060 1061
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1062
    PADDLE_ENFORCE_EQ(
1063 1064
        vars.size(),
        1UL,
1065 1066
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
1067 1068
                                          name,
                                          vars.size()));
X
Xin Pan 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1078 1079 1080 1081 1082 1083 1084 1085
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1086
 protected:
X
Xin Pan 已提交
1087
  DDim GetDim(Variable* var) const {
1088 1089
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1090 1091
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dims();
1092 1093
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1094
    } else {
1095
      PADDLE_THROW(platform::errors::InvalidArgument(
1096
          "Only phi::DenseTensor or SelectedRows support 'GetDim', but input "
1097 1098
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1099 1100 1101
    }
  }

X
Xin Pan 已提交
1102 1103 1104
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
1105 1106 1107
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(ret),
X
Xin Pan 已提交
1108 1109 1110 1111
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1112
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1113 1114
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1115 1116
  }

X
Xin Pan 已提交
1117
  void SetDim(Variable* var, const DDim& dim) {
1118 1119
    if (var->IsType<phi::DenseTensor>()) {
      var->GetMutable<phi::DenseTensor>()->Resize(dim);
1120 1121
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1122
    } else {
1123
      PADDLE_THROW(platform::errors::Unimplemented(
1124 1125
          "Variable type error, expect phi::DenseTensor or SelectedRows, but "
          "received "
1126 1127
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1128 1129 1130 1131 1132 1133
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1134 1135
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
1136 1137 1138 1139
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
1140 1141
                          length,
                          dims.size()));
X
Xin Pan 已提交
1142 1143 1144 1145 1146
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1147 1148 1149
    }
  }

F
fengjiayi 已提交
1150 1151
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1152 1153
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1154 1155
  }

X
Xin Pan 已提交
1156 1157 1158 1159
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
1160 1161 1162
    std::transform(vars.begin(),
                   vars.end(),
                   retv.begin(),
X
Xin Pan 已提交
1163
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
1164 1165
                             this,
                             std::placeholders::_1));
X
Xin Pan 已提交
1166 1167 1168 1169
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1170 1171 1172
    return ToVarType(var->Type());
  }

1173 1174 1175
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1176
    PADDLE_ENFORCE_NE(
1177 1178
        it,
        ctx_.inputs.end(),
1179 1180
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1181 1182 1183 1184 1185
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1186
    PADDLE_ENFORCE_NE(
1187 1188
        it,
        ctx_.outputs.end(),
1189 1190
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1191
    return it->second;
F
fengjiayi 已提交
1192 1193
  }

1194
  const OperatorBase& op_;
X
Xin Pan 已提交
1195
  const RuntimeContext& ctx_;
1196 1197
};

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
struct OperatorWithKernel::CacheImpl {
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
                     RuntimeInferShapeContext* infer_shape_ctx)
      : kernel_ctx_(kernel_ctx), infer_shape_ctx_(infer_shape_ctx) {}

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
};

1213 1214
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
1215
                                const phi::DenseTensor& tensor) {
C
chengduoZH 已提交
1216 1217 1218
  if (tensor.memory_size() == 0) {
    return;
  }
1219 1220
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1221 1222
    return;
  }
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
  PADDLE_ENFORCE_NE(framework::TensorContainsInf(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains Inf.",
                        op_type,
                        name));
  PADDLE_ENFORCE_NE(framework::TensorContainsNAN(tensor),
                    true,
                    platform::errors::Fatal(
                        "Operator %s output phi::DenseTensor %s contains NAN.",
                        op_type,
                        name));
C
chengduoZH 已提交
1235 1236
}

1237 1238 1239 1240
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1241 1242
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1255 1256
          op_kernels.begin(),
          op_kernels.end(),
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1268 1269
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1282 1283
          op_kernels.begin(),
          op_kernels.end(),
1284 1285 1286 1287 1288 1289 1290
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
                   paddle::platform::is_xpu_support_op(type_,
                                                       kern_pair.first) &&
                   !paddle::platform::is_in_xpu_black_list(type_);
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1328 1329
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1330 1331 1332 1333 1334
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1335 1336 1337 1338
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
                           kern_pair.first.dtype() ==
                               framework::TransToPhiDataType(data_type);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
                   kern_pair.first.data_type_ == data_type;
          });
    }
1357
  }
1358 1359
}

1360
bool OperatorWithKernel::SupportsKernelType(
1361
    const OpKernelType& kernel_type, const ExecutionContext& exe_ctx) const {
1362 1363
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1364 1365 1366 1367 1368
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1369
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1370 1371 1372
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
1373 1374
  }
#endif
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, kernel_type);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
  }
#endif

1395
// NOTE(jiahongyu): If MKLDNN can be used, the function SupportsKernelType needs
1396 1397 1398 1399 1400
// to check whether current op supports MKLDNN kernel. There are three
// statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1401
#ifdef PADDLE_WITH_MKLDNN
1402
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1403 1404 1405 1406 1407 1408 1409 1410
      this->CanMKLDNNBeUsed(exe_ctx, kernel_type.data_type_)) {
    auto tmp_kernel_type = kernel_type;
    tmp_kernel_type.library_type_ = framework::LibraryType::kMKLDNN;
    tmp_kernel_type.data_layout_ = framework::DataLayout::kMKLDNN;
    return kernels.find(tmp_kernel_type) != kernels.end();
  }
#endif

1411
  return kernel_iter != kernels.end();
1412 1413
}

1414 1415
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1416 1417 1418 1419 1420 1421 1422
  // NOTE(jiahongyu): Only mkldnn kernels need to check "use_mkldnn" attribute,
  // hence we first call function SupportsMKLDNN. If we check "use_mkldnn"
  // attribute first, it will cause error because some codes add "use_mkldnn"
  // attribute to non-mkldnn ops.
  if (!this->SupportsMKLDNN(data_type)) {
    return false;
  }
1423
  const std::string use_mkldnn_attr = "use_mkldnn";
1424 1425
  return ctx.HasAttr(use_mkldnn_attr) && ctx.Attr<bool>(use_mkldnn_attr) &&
         platform::is_cpu_place(ctx.GetPlace());
1426 1427
}

1428 1429 1430 1431 1432 1433 1434
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1435
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1436 1437
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1438
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1439
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1440 1441
}

L
luotao1 已提交
1442 1443
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1444 1445
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1446 1447 1448
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1449
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1450
    all_kernels_must_compute_runtime_shape_ = true;
1451
  const Scope* cur_scope = &scope;
1452
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1453 1454
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1455
    pre_scope_ = cur_scope;
1456 1457 1458 1459 1460
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
    if (!all_kernels_must_compute_runtime_shape_)
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1461
  } else {
1462 1463 1464 1465 1466 1467
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1468
    }
1469
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1470 1471 1472 1473 1474 1475
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1476
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1477
  bool fallback_to_cpu = false;
1478
  auto* dev_ctx = pool.Get(place);
1479

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1490
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1491 1492 1493 1494
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1495

1496 1497 1498 1499 1500 1501
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1502 1503 1504 1505 1506
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1507 1508
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1509
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1510
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1511 1512 1513
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1514 1515 1516 1517 1518

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1519
      phi_kernel_name = kernel_signature_->name;
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1542
                  << phi_kernel_name
1543
                  << ", using_kernel_key:" << *kernel_type_.get();
1544
          auto try_phi_kernel_key =
1545
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1546 1547
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1548 1549
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1550
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1551 1552 1553
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1554
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1555 1556 1557 1558
          }
        }
      }
#endif
1559 1560
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1561
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1562
              phi_kernel_name, phi_kernel_key)));
1563

1564
      if (phi_kernel_->IsValid()) {
1565
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1566 1567
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1568
      } else {
1569
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1570 1571
                << "` not found.";
      }
1572
    } else {
1573
      phi_kernel_name = kernel_signature_->name;
1574 1575 1576 1577

// NOTE(jiahongyu): The registered MKLDNN kernel have library_type =
// LibraryType::kMKLDNN and data_layout_ = DataLayout::kMKLDNN. But the default
// values are kPlain, so we need to modify the library_type and data_layout_
1578 1579 1580 1581
// here. There are three statements in if condition:
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1582
#ifdef PADDLE_WITH_MKLDNN
1583 1584
      if (!this->DnnFallback() &&
          !paddle::platform::in_mkldnn_white_list(type_) &&
1585 1586 1587 1588 1589 1590
          this->CanMKLDNNBeUsed(exe_ctx, kernel_type_->data_type_)) {
        kernel_type_->library_type_ = framework::LibraryType::kMKLDNN;
        kernel_type_->data_layout_ = framework::DataLayout::kMKLDNN;
      }
#endif

1591 1592 1593
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1612
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1613
                  << phi_kernel_name
1614
                  << ", using_kernel_key:" << *kernel_type_.get();
1615
          auto try_phi_kernel_key =
1616
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1617 1618
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1619
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1620
            VLOG(3) << "modify XPU KP kernel in static graph: "
1621
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1622 1623 1624
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1625
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1626 1627 1628 1629
          }
        }
      }
#endif
1630
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1631
    }
1632 1633 1634 1635

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1636
#if defined(PADDLE_WITH_XPU)
1637 1638 1639 1640 1641
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1653
    if (phi_kernel_->IsValid()
1654
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1655 1656
        && !is_xpu_unsupport
#endif
1657 1658 1659
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1660
    ) {
1661
      run_phi_kernel_ = true;
1662 1663 1664
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1675 1676 1677
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1678
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1679
          || is_xpu_unsupport
1680
#endif
1681 1682 1683
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1684
      ) {
1685
        fallback_to_cpu = true;
1686 1687 1688
        auto phi_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), phi_kernel_key, *this);
        phi_kernel_.reset(
1689
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1690
                phi_kernel_name, phi_cpu_kernel_key)));
1691 1692

        dev_ctx = pool.Get(platform::CPUPlace());
1693 1694 1695 1696
        if (phi_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: "
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1697
          run_phi_kernel_ = true;
1698 1699
        }
      }
1700 1701
    }
  }
1702
  if (!run_phi_kernel_) {
1703 1704
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1705
      dev_ctx = pool.Get(kernel_type_->place_);
1706
    }
1707 1708
  }

Y
yuyang18 已提交
1709 1710
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1711 1712
  Scope* transfer_scope = nullptr;
  {
1713
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1714
                                       platform::TracerEventType::OperatorInner,
1715 1716
                                       1,
                                       platform::EventRole::kInnerOp);
1717
    if (need_prepare_data_) {
1718 1719
      transfer_scope = PrepareData(
          scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
1720
    }
1721
  }
Y
yuyang18 已提交
1722 1723 1724 1725
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1726
  if (!all_kernels_must_compute_runtime_shape_) {
1727
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1728
                                       platform::TracerEventType::OperatorInner,
1729 1730
                                       1,
                                       platform::EventRole::kInnerOp);
1731
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1732
    this->Info().infer_shape_(&infer_shape_ctx);
1733 1734 1735
    record_event.End();
    platform::RecordOpInfoSupplement(
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx);
1736
  }
1737 1738 1739 1740 1741

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1742 1743
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1744
  {
1745
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1746
                                       platform::TracerEventType::OperatorInner,
1747 1748
                                       1,
                                       platform::EventRole::kInnerOp);
1749
    if (run_phi_kernel_) {
1750
      phi::KernelContext phi_kernel_context;
1751 1752
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1753 1754 1755
        impl_ =
            new CacheImpl(new phi::KernelContext(),
                          new RuntimeInferShapeContext(*this, *runtime_ctx));
1756
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1757
        (*phi_kernel_)(impl_->getKernelContext());
1758
      } else {
1759
        phi::KernelContext phi_kernel_context;
1760 1761
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1762 1763
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1764
      }
1765 1766 1767 1768
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1769 1770 1771
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
1772
  }
D
dzhwinter 已提交
1773

Y
yuyang18 已提交
1774
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1775
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1776
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1777
  }
1778 1779 1780 1781 1782 1783 1784

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1785 1786 1787 1788 1789 1790 1791 1792
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1793

D
dzhwinter 已提交
1794
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1795
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1796
    dev_ctx->Wait();
1797 1798
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1799 1800
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1801
  }
C
chengduoZH 已提交
1802 1803

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1804
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1805
  }
1806 1807 1808 1809 1810 1811 1812

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1813
}
X
Xin Pan 已提交
1814

1815 1816 1817
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1818 1819 1820

// NOTE(jiahongyu): PADDLE_WITH_MKLDNN codes are moved outside function
// GetExpectedKernelType, so that if MKLDNN can be used, the library_type_ and
1821
// data_layout_ of expected_kernel_key need to be adjusted. There are three
1822
// statements in if condition:
1823 1824 1825
// 1. Whether mkldnn kernel fallbacks to plain kernel;
// 2. Whether this op has specific implementation;
// 3. Whether mkldnn kernel can be used.
1826
#ifdef PADDLE_WITH_MKLDNN
1827
  if (!this->DnnFallback() && !paddle::platform::in_mkldnn_white_list(type_) &&
1828 1829 1830 1831 1832 1833
      this->CanMKLDNNBeUsed(ctx, expected_kernel_key.data_type_)) {
    expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN;
    expected_kernel_key.data_layout_ = framework::DataLayout::kMKLDNN;
  }
#endif

1834 1835 1836
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1847 1848 1849
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
1850 1851
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1852
      if (SupportGPU()) {
1853
        auto& dev_ctx = ctx.device_context();
1854
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1855 1856
      }
#endif
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
1876 1877 1878
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1879
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1880 1881 1882
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1883 1884
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
1911 1912 1913
      }
    }
  }
C
cc 已提交
1914 1915
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1916 1917 1918
  return expected_kernel_key;
}

1919
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1920
    const ExecutionContext& ctx) const {
1921 1922 1923
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1924 1925 1926 1927

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1928 1929 1930 1931
  auto phi_kernel_name = kernel_signature_->name;
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
1932

1933 1934 1935 1936
  if (phi_kernel_->IsValid()) {
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << phi_kernel_name
            << " | kernel key: " << phi_kernel_key
            << " | kernel: " << *phi_kernel_;
1937
  } else {
1938
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1939 1940
            << "` not found.";
  }
1941
  return phi_kernel_key;
1942 1943 1944 1945 1946 1947 1948
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
1949 1950
      kernels_iter,
      all_op_kernels.end(),
1951
      platform::errors::Unimplemented(
1952 1953 1954 1955 1956 1957
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1958 1959

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1960

L
Liu Yiqun 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1970
#endif
1971 1972

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1973
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1974 1975 1976
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1977
    VLOG(3) << "fluid missing XPU kernel: " << type_
1978 1979 1980 1981 1982
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1983
#endif
L
Liu-xiandong 已提交
1984 1985

#ifdef PADDLE_WITH_XPU_KP
1986 1987 1988 1989 1990 1991 1992
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
1993
      VLOG(3) << "fluid xpu_kp using rt mode ";
1994 1995
    }
    if (use_xpu_kp_kernel_debug) {
1996
      VLOG(3) << "fluid xpu_kp using debug mode ";
1997 1998 1999
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
2000 2001
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
2002 2003
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
2004
      // if can't find corresponding kernel when is_xpu_kp_support is on
H
HongyuJia 已提交
2005
      // if the fluid do not register related kernel, it can't work and have
2006 2007 2008 2009 2010 2011 2012
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
2013
        VLOG(3) << "fluid using XPU KP kernel: " << type_
2014 2015
                << ", using_kernel_key:" << expected_kernel_key;
      }
2016 2017 2018 2019 2020 2021
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
2022
      VLOG(3) << "fluid missing XPU kernel: " << type_
2023 2024 2025 2026 2027
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
2028 2029 2030
  }
#endif

A
Allen Guo 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
2041 2042
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
2043
      platform::is_npu_place(expected_kernel_key.place_)) {
2044 2045 2046 2047 2048 2049
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
2050 2051 2052
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
2053
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
2054 2055 2056
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2068 2069 2070
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2071
#endif
2072 2073 2074 2075 2076 2077
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2078

2079 2080 2081 2082 2083
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2084 2085
}

Y
yuyang18 已提交
2086
void OperatorWithKernel::TransferInplaceVarsBack(
2087 2088
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2089 2090
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2091
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2092
    auto* origin_var = scope.FindVar(var_name);
2093 2094 2095
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2096
    auto* original_tensor =
C
chengduo 已提交
2097
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2098
    auto* var = transfer_scope.FindVar(var_name);
2099 2100 2101
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2102
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2103
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2104
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2105 2106 2107 2108 2109
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2110 2111 2112
  }
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2142
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2162
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
2173
      phi::DenseTensor out;
2174 2175 2176 2177 2178 2179
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2180
Scope* OperatorWithKernel::PrepareData(
2181 2182
    const Scope& scope,
    const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
2183 2184
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
2185
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2186

2187
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2188 2189 2190 2191
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2192 2193
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2194 2195 2196
    }
  }

2197 2198 2199 2200 2201 2202 2203 2204 2205
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2206

Y
yuyang18 已提交
2207
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2208
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2209 2210 2211
        continue;
      }

C
chengduo 已提交
2212
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2213

2214
      // When no_buffer_ins then checking of phi::DenseTensor::holder_ is
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
2226
            (var->IsType<phi::DenseTensor>() == true) &&
2227
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
2228
            (paddle::platform::MKLDNNDeviceContext::tls()
2229 2230
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC) &&
            (tensor_in->dims().size() >= 3)) {
2231 2232 2233 2234 2235
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2236
          in_vars->at(i) = trans_var;
2237
          auto out = trans_var->GetMutable<phi::DenseTensor>();
2238
          out->Resize(tensor_in->dims());
2239 2240
          platform::MatchShapeToLayout(
              out, tensor_in->layout(), DataLayout::kNHWC);
2241 2242
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN "
                     "phi::DenseTensor , "
2243
                     "but kNHWC layout"
2244
                  << in_name << " in Operator " << type_;
2245
        } else {
2246 2247
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2248 2249 2250 2251 2252
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2253 2254 2255 2256
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
          kernel_type_for_var.data_type_ != expected_kernel_key.data_type_;
      bool need_trans_layout = NeedTransformLayout(
          kernel_type_for_var.data_layout_, expected_kernel_key.data_layout_);
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
            platform::places_are_same_class(kernel_type_for_var.place_,
                                            expected_kernel_key.place_)) {
          continue;
        }
      }
Y
yuyang18 已提交
2270

2271 2272 2273 2274 2275
      std::unique_ptr<OpKernelType> new_expected_kernel_key = nullptr;
      if (run_phi_kernel_ && in_def->backend != phi::Backend::ALL_BACKEND) {
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
             (in_def->backend != phi::Backend::GPUDNN ||
2276 2277
              tensor_backend != phi::Backend::GPU) &&
             (in_def->backend != phi::Backend::KPS ||
2278 2279 2280
              tensor_backend != phi::Backend::XPU) &&
             (in_def->backend != phi::Backend::ONEDNN ||
              tensor_backend != phi::Backend::CPU)) ||
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
          new_expected_kernel_key = std::make_unique<OpKernelType>(
              expected_kernel_key.data_type_,
              phi::TransToPhiPlace(in_def->backend),
              expected_kernel_key.data_layout_,
              expected_kernel_key.library_type_,
              expected_kernel_key.customized_type_value_);
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2295 2296
      }

M
minqiyang 已提交
2297
      VLOG(3) << "Transform Variable " << var_name << " from "
2298 2299 2300
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2301

H
HongyuJia 已提交
2302 2303 2304
      // In the inference scenario, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memory explosion
      // over the running of operators.
2305
      // We use a thread_local cache to fix that issue, the key in the cache is
2306 2307 2308 2309 2310
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2311 2312
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2313
      // variables, that behavior a lot different.
2314 2315 2316 2317 2318 2319
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
          if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
               platform::is_gpu_place(new_expected_kernel_key->place_))) {
            new_scope = TryCreateTransferScope(
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
        } else if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
                    platform::is_gpu_place(expected_kernel_key.place_))) {
          new_scope = TryCreateTransferScope(
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2334
      }
2335

2336
      if (!new_scope) {
Y
yuyang18 已提交
2337 2338
        new_scope = &scope.NewScope();
      }
2339 2340 2341 2342
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
2343
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
2344 2345
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
2346
      if (enable_cache_runtime_context_) {
2347 2348
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2349 2350

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2351
      auto* trans_var = new_scope->Var(var_name);
2352
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2353 2354 2355 2356 2357 2358 2359

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2360
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
2370
      phi::DenseTensor out;
2371 2372 2373 2374 2375
      TransformData(new_expected_kernel_key ? *new_expected_kernel_key
                                            : expected_kernel_key,
                    kernel_type_for_var,
                    *tensor_in,
                    &out);
Y
yuyang18 已提交
2376 2377
      SetTensorToVariable(*var, out, trans_var);
    }
2378 2379 2380 2381
  };

  if (run_phi_kernel_) {
    const auto& input_names = kernel_signature_->input_names;
2382
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2383 2384 2385 2386 2387 2388 2389 2390
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
2391
      const auto& input_defs = phi_kernel_->args_def().input_defs();
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2412
  }
L
Leo Chen 已提交
2413

2414 2415 2416 2417 2418 2419
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2420 2421 2422 2423 2424 2425

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2426 2427
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2428 2429 2430

  return new_scope;
}
Q
Qiao Longfei 已提交
2431

2432
void OperatorWithKernel::ParseInputDataType(
2433 2434
    const Variable* var,
    const std::string& name,
2435 2436
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
2437 2438 2439
    const phi::DenseTensor* t = nullptr;
    if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2440 2441
    } else if (var->IsType<phi::DenseTensor>()) {
      t = &var->Get<phi::DenseTensor>();
2442 2443
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      PADDLE_ENFORCE_EQ(
          sp_t->initialized(),
          true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(),
                                            name));
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2455 2456 2457 2458 2459 2460 2461 2462 2463
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
2464 2465 2466 2467 2468 2469 2470
      PADDLE_ENFORCE_EQ(t->IsInitialized(),
                        true,
                        platform::errors::InvalidArgument(
                            "The %s Op's Input Variable `%s` "
                            "contains uninitialized phi::DenseTensor.",
                            Type(),
                            name));
2471 2472 2473 2474 2475 2476
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2477 2478
    const std::vector<Variable*>& vars,
    const std::string& name,
2479
    proto::VarType::Type* data_type) const {
2480
  proto::VarType::Type default_data_type =
2481 2482 2483 2484
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
2485 2486 2487
      const phi::DenseTensor* t = nullptr;
      if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2488 2489
      } else if (var->IsType<phi::DenseTensor>()) {
        t = &var->Get<phi::DenseTensor>();
2490 2491
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2515
      } else if (var->IsType<LoDTensorArray>()) {
2516 2517 2518 2519
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2520 2521
          }
        }
2522 2523
      }
      if (t != nullptr) {
2524 2525 2526 2527 2528 2529 2530
        PADDLE_ENFORCE_EQ(t->IsInitialized(),
                          true,
                          platform::errors::InvalidArgument(
                              "The %s Op's Input Variable `%s` "
                              "contains uninitialized phi::DenseTensor.",
                              Type(),
                              name));
2531 2532
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2533 2534 2535 2536 2537 2538 2539
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2540 2541 2542
                           Type(),
                           name,
                           DataTypeToString(tmp),
2543
                           DataTypeToString(*data_type)));
2544 2545 2546 2547 2548 2549
        *data_type = tmp;
      }
    }
  }
}

2550
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2551
    const ExecutionContext& ctx) const {
2552 2553 2554
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2555 2556 2557 2558 2559 2560
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2561
  }
2562
  PADDLE_ENFORCE_NE(
2563 2564
      data_type,
      dafault_data_type,
2565 2566
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2567 2568 2569 2570 2571 2572 2573 2574
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2575 2576 2577 2578 2579
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2580
  PADDLE_ENFORCE_NE(
2581 2582
      data_type,
      dafault_data_type,
2583 2584
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
2585
          "data type is empty or not phi::DenseTensor or SelectedRows or "
2586
          "LoDTensorArray.",
2587 2588
          name,
          Type()));
2589
  return data_type;
Y
Yu Yang 已提交
2590
}
2591

2592
phi::DenseTensor* OperatorWithKernel::GetTensorFormInputSafely(
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
2605 2606 2607
  phi::DenseTensor* t = nullptr;
  if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2608 2609
  } else if (var->IsType<phi::DenseTensor>()) {
    t = var->GetMutable<phi::DenseTensor>();
2610 2611
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2612 2613 2614 2615
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
2616 2617 2618 2619 2620 2621 2622
  PADDLE_ENFORCE_NOT_NULL(t,
                          platform::errors::InvalidArgument(
                              "The phi::DenseTensor of variable %s is nullptr "
                              "when promote complex types."));
  PADDLE_ENFORCE_EQ(
      t->IsInitialized(),
      true,
2623
      platform::errors::InvalidArgument(
2624 2625 2626 2627 2628
          "The phi::DenseTensor in the %s Op's Input Variable %s(%s) is "
          "not initialized.",
          Type(),
          name,
          ctx.InputName(name)));
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2640 2641
    const ExecutionContext& ctx,
    const std::string& name1,
2642 2643 2644 2645 2646 2647
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2648 2649
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2650 2651 2652 2653 2654 2655 2656

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2657 2658 2659 2660 2661 2662
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
2663
    const std::string& var_name,
2664
    const phi::DenseTensor& tensor,
2665
    const OpKernelType& expected_kernel_type) const {
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
#ifdef PADDLE_WITH_MKLDNN
  // When the op is first oneDNN op (there was some non oneDNN op
  // previously)
  // then we also need to rotate shape NHWC -> NCWH
  if ((expected_kernel_type.data_layout_ == phi::DataLayout::kMKLDNN) &&
      (tensor.layout() != phi::DataLayout::kMKLDNN) &&
      paddle::platform::MKLDNNDeviceContext::tls()
              .get_cur_paddle_data_layout() == phi::DataLayout::kNHWC) {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   phi::DataLayout::kNHWC);
  }
#endif
2679 2680
  return OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
2681 2682
}

2683
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2684
    const ExecutionContext& ctx) const {
2685
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2686
  if (arg_map_fn_ == nullptr) {
2687 2688 2689 2690
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2691 2692 2693
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2694 2695 2696 2697
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2698 2699
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2700 2701
}

2702
void OperatorWithKernel::BuildPhiKernelContext(
2703 2704
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
2705 2706
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
2707

2708 2709 2710
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2711

2712 2713 2714
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
2715

2716 2717
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
2718 2719 2720
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
2721 2722
                        input_names.size(),
                        input_defs.size()));
2723

2724 2725
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
2726 2727 2728
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
2729 2730
                        output_names.size(),
                        output_defs.size()));
2731

2732 2733
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
2734 2735 2736
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
2737 2738
                        attr_names.size(),
                        attr_defs.size()));
2739 2740

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2741
    auto it = ctx.inputs.find(input_names[i]);
2742 2743 2744

    // calcute the start and end index of the input tensors
    size_t start_idx =
2745
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
2746
    // deal with optional here
2747
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2748
        (input_defs[i].type_index ==
2749
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
2750
         input_defs[i].type_index ==
2751
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
2752
         input_defs[i].type_index ==
2753 2754
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
2755
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
2756
      auto end_idx = start_idx + 1;
2757 2758
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
2759

H
hong 已提交
2760 2761 2762 2763
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2764
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2765
      const phi::TensorBase* tensor_in = nullptr;
2766
      auto* var = ins_vector[offset];
2767 2768
      if (var->IsType<phi::DenseTensor>()) {
        tensor_in = &(var->Get<phi::DenseTensor>());
2769
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2770 2771
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2772
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2773 2774 2775
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2776
      } else if (var->IsType<framework::LoDTensorArray>()) {
2777
        need_prepare_phi_data_ = true;
2778 2779
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2780 2781 2782 2783
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2784
      }
2785
    }
2786
    // Note: here cannot deal with vector<LoDTensorArray> input
2787
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2788
  }
2789
  VLOG(4) << "Done inputs";
2790 2791

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2792
    auto it = ctx.outputs.find(output_names[i]);
2793
    size_t start_idx =
2794
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2795 2796 2797 2798 2799 2800

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
2801
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
2802
      auto end_idx = start_idx + 1;
2803 2804
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
2805 2806 2807 2808
      continue;
    }
    auto& outs_vector = it->second;

2809
    size_t end_idx = start_idx + outs_vector.size();
2810 2811

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2812
      phi::TensorBase* tensor_out = nullptr;
2813
      auto* var = outs_vector[offset];
2814
      if (var) {
2815 2816
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
2817
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2818 2819
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2820
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2821 2822 2823
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2824
        } else if (var->template IsType<framework::LoDTensorArray>()) {
2825
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
2826 2827
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
2828
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2829 2830 2831 2832 2833
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2834
      } else {
2835
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2836
      }
2837
    }
2838 2839
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
2840
  }
2841
  VLOG(4) << "Done outputs";
2842 2843

  for (size_t i = 0; i < attr_names.size(); ++i) {
2844 2845
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
2846 2847
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
2848 2849 2850 2851 2852 2853 2854
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
2855
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2856
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
2857
              break;
2858 2859 2860 2861
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
2862
            case proto::AttrType::INT:
2863
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2864
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
2865
              break;
2866 2867 2868 2869
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
2870
            case proto::AttrType::STRING:
2871
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
2872
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
2873
              break;
2874 2875 2876 2877
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
2878 2879 2880 2881 2882 2883 2884
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
2885
          need_prepare_phi_data_ = true;
2886
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
2887
          phi_kernel_context->EmplaceBackAttr(std::move(
2888
              experimental::MakePhiScalarFromVar(*ins_vector.front())));
2889
        }
2890 2891 2892 2893 2894
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
2895
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2896
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
2897 2898
              break;
            case proto::AttrType::LONGS:
2899
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2900
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2901 2902
              break;
            case proto::AttrType::INT:
2903
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2904
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
2905 2906
              break;
            case proto::AttrType::LONG:
2907
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2908
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
2909 2910 2911 2912 2913 2914 2915 2916
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
2917
          need_prepare_phi_data_ = true;
2918 2919
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
2920
            phi_kernel_context->EmplaceBackAttr(std::move(
2921 2922
                experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
          } else {  // ShapeTensorList
2923
            phi_kernel_context->EmplaceBackAttr(std::move(
2924 2925
                experimental::MakePhiIntArrayFromVarList(ins_vector)));
          }
2926
        }
2927 2928 2929
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
2930 2931
            attr_iter,
            Attrs().end(),
2932 2933 2934 2935 2936 2937
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2938
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
2939 2940 2941 2942 2943
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2944
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2945 2946 2947
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2948
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
2949 2950 2951 2952 2953
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2954
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2955 2956 2957
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2958
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
2959 2960 2961 2962 2963
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2964
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2965 2966 2967
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
2968
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
2969 2970 2971 2972 2973
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2974
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2975 2976 2977
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2978
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
2979 2980 2981 2982 2983
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2984
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2985 2986 2987 2988 2989
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
2990 2991
                attr_names[i]));
        }
2992 2993
      } break;
      default: {
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
        if (attr_iter == Attrs().end()) {
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

3004 3005
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
3006
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3007
                PADDLE_GET_CONST(float, attr_iter->second));
3008
            break;
3009 3010 3011 3012
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
3013
          case phi::AttributeType::INT32:
3014
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3015
                PADDLE_GET_CONST(int, attr_iter->second));
3016 3017
            break;
          case phi::AttributeType::BOOL:
3018
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3019
                PADDLE_GET_CONST(bool, attr_iter->second));
3020 3021
            break;
          case phi::AttributeType::INT64:
3022
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3023
                PADDLE_GET_CONST(int64_t, attr_iter->second));
3024 3025
            break;
          case phi::AttributeType::INT32S:
3026
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3027
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
3028 3029 3030 3031
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
3032
                    PADDLE_GET_CONST(int, attr_iter->second)));
3033
            phi_kernel_context->EmplaceBackAttr(data_type);
3034 3035
          } break;
          case phi::AttributeType::STRING:
3036
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3037
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
3038 3039 3040 3041
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
3042
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3043
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
3044 3045 3046
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
3047
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
3048 3049
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
3050
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
3061
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3062
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
3063 3064
            break;
          case phi::AttributeType::STRINGS:
3065
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
3066
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
3067 3068 3069 3070 3071 3072
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3073
        }
3074 3075 3076
      }
    }
  }
3077
  VLOG(4) << "Done attributes";
3078 3079
}

Q
Qiao Longfei 已提交
3080
}  // namespace framework
L
liaogang 已提交
3081
}  // namespace paddle