operator.cc 59.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/framework/data_transform.h"
23
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
24
#include "paddle/fluid/framework/details/nan_inf_utils.h"
25
#include "paddle/fluid/framework/op_call_stack.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
30
#include "paddle/fluid/platform/enforce.h"
31
#include "paddle/fluid/platform/profiler.h"
32 33 34 35 36 37

namespace paddle {
namespace framework {
class LoDTensor;
}  // namespace framework
}  // namespace paddle
38 39 40
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif
Q
Qiao Longfei 已提交
41

42 43 44 45
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
46
DECLARE_bool(benchmark);
47
DECLARE_bool(check_nan_inf);
48
DECLARE_bool(enable_unused_var_check);
Q
Qiao Longfei 已提交
49
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
D
dzhwinter 已提交
50

Q
Qiao Longfei 已提交
51 52 53
namespace paddle {
namespace framework {

54 55 56 57 58 59
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
60

61 62
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
63
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
64 65
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
66 67
  }

M
minqiyang 已提交
68 69 70 71 72 73 74 75 76
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
77 78 79 80 81
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
82 83 84 85 86 87
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
88 89 90 91 92
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
93

M
minqiyang 已提交
94 95 96
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
97 98
      return "";
    }
Y
Yu Yang 已提交
99
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
100
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
101 102 103 104
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
105
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
106
    }
D
dzhwinter 已提交
107 108 109 110 111
  } else {
    return "";
  }
}

L
Leo Chen 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static std::string GetPlace(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
  } else if (var->IsType<SelectedRows>()) {
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

141 142 143 144 145 146
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
147 148
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
149 150 151 152 153
  }

  return -1;
}

154
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
155 156 157 158 159 160 161
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
162 163 164
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
165 166 167 168 169
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
170 171 172 173 174
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
175
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
176 177 178 179 180 181
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
182
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
183 184 185 186 187 188
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

189
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
190 191 192
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
193
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
194 195 196 197
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
198
#else
199
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
200
      platform::SetDeviceId(dev_id);
201 202 203
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
204 205 206 207
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
208 209 210
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
211
#endif
P
peizhilin 已提交
212
    }
P
peizhilin 已提交
213

214
    {
215 216 217 218 219 220
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
221
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
222 223
      RunImpl(scope, place);
    }
224

Z
Zhang Ting 已提交
225
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
226
  } catch (platform::EnforceNotMet& exception) {
227
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
228
    throw std::move(exception);
229 230 231 232 233 234
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
235
  } catch (...) {
236
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
237
    std::rethrow_exception(std::current_exception());
238
  }
239 240
}

241
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
242
  return inputs_.find(name) != inputs_.end();
243 244
}

245
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
246
  auto& ins = Inputs(name);
247 248
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
249
      platform::errors::InvalidArgument(
250 251
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
252
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
253 254
}

Y
Yu Yang 已提交
255 256
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
257
  auto it = inputs_.find(name);
258 259 260 261
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
262
  return it->second;
Y
Yan Chunwei 已提交
263 264
}

265
bool OperatorBase::HasOutputs(const std::string& name) const {
266
  if (outputs_.find(name) != outputs_.end()) {
267 268 269 270 271 272
    return true;
  } else {
    return false;
  }
}

273
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
274
  auto& outs = Outputs(name);
275 276 277 278 279
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
280
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
281 282
}

Y
Yu Yang 已提交
283 284
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
285
  auto it = outputs_.find(name);
286 287 288 289
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
290
  return it->second;
Y
Yan Chunwei 已提交
291 292
}

293
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
294
  std::stringstream ss;
Y
Yu Yang 已提交
295
  ss << "Op(" << type_ << "), inputs:{";
296

297
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
298 299
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
300 301
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
302 303
  }

Y
Yu Yang 已提交
304 305
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
306 307
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
308 309
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
310 311
      auto var_name = input.second[i];
      ss << var_name;
312
      if (scope) {
Q
Qiao Longfei 已提交
313 314 315 316 317 318 319
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
320 321 322
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
323
          ss << ":" << dtype;
324 325
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
326
          ss << "(" << GetPlace(*scope, var_name) << ")";
327
        }
328
      }
Y
Yu Yang 已提交
329 330 331
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
332
    }
Y
Yu Yang 已提交
333
    ss << "]";
Y
Yu Yang 已提交
334 335
    ++it;
    if (it != inputs_.end()) {
336 337
      ss << ", ";
    }
Q
Qiao Longfei 已提交
338
  }
Y
Yu Yang 已提交
339
  ss << "}, outputs:{";
Y
Yu Yang 已提交
340 341
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
342 343
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
344 345
      auto var_name = output.second[i];
      ss << var_name;
346
      if (scope) {
Q
Qiao Longfei 已提交
347 348 349 350 351 352 353
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
354 355
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
356 357
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
358
          ss << "(" << GetPlace(*scope, var_name) << ")";
359
        }
360
      }
Y
Yu Yang 已提交
361 362 363
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
364
    }
Y
Yu Yang 已提交
365
    ss << "]";
Y
Yu Yang 已提交
366 367
    ++it;
    if (it != outputs_.end()) {
368 369
      ss << ", ";
    }
Q
Qiao Longfei 已提交
370
  }
Y
Yu Yang 已提交
371
  ss << "}.";
Q
Qiao Longfei 已提交
372 373 374
  return ss.str();
}

Y
Yu Yang 已提交
375
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
376 377
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
378
                           const AttributeMap& attrs)
S
sneaxiy 已提交
379 380 381 382 383 384
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
385 386 387 388 389 390 391 392
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
393
}
394

Q
qijun 已提交
395 396
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
397
  for (auto& o : inputs_) {
Q
qijun 已提交
398 399 400 401 402 403
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
404 405 406 407 408 409 410 411 412 413
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
414
  auto& info = Info();
Y
Yu Yang 已提交
415 416

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
417
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
418 419 420 421 422 423 424 425 426
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
427 428
}

429
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
430
  if (info_ == nullptr || info_->proto_ == nullptr) return;
431

S
sneaxiy 已提交
432
  for (auto& in : info_->Proto().inputs()) {
433
    if (!in.dispensable()) {
434 435 436 437
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
438
    }
439 440
  }

S
sneaxiy 已提交
441
  for (auto& out : info_->Proto().outputs()) {
442
    if (!out.dispensable()) {
443 444 445 446
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
447
    }
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
464
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
465
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
466 467
}

C
chengduo 已提交
468
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
469 470 471 472
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
473
  } else {
474 475 476
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
477 478 479
  }
}

C
chengduo 已提交
480
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
481
  if (var->IsType<LoDTensor>()) {
482
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
483
  } else if (var->IsType<SelectedRows>()) {
484
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
485
  } else {
486 487 488
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
489 490 491
  }
}

492
bool ExecutionContext::HasInput(const std::string& name) const {
493
  auto* var = InputVar(name);
494 495 496 497
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
498
  auto* var = OutputVar(name);
499 500 501
  return var != nullptr;
}

X
Xin Pan 已提交
502
const Variable* ExecutionContext::InputVar(const std::string& name) const {
503 504
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
505 506 507
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

508 509
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
510
      platform::errors::InvalidArgument(
511 512
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
513 514 515
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
516
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
517 518 519
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

520 521 522 523 524
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
525 526 527
  return it->second.empty() ? nullptr : it->second[0];
}

528
template <>
529
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
530
  return Input<LoDTensor>(name);
531 532 533
}

template <>
534
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
535
    const std::string& name) const {
536 537
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
538 539
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
540 541 542 543 544
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
545
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
546
                   if (var == nullptr) return nullptr;
547 548 549 550 551
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
552 553 554 555 556
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

557
template <>
558
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
559
  return Output<LoDTensor>(name);
560 561 562
}

template <>
563
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
564
    const std::string& name) const {
H
hong 已提交
565 566 567
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
568 569
    return {};
  }
570
  std::vector<Tensor*> res;
571 572 573 574 575
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
576
                 });
577 578 579
  return res;
}

Y
Yu Yang 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

595 596
class RuntimeInferShapeContext : public InferShapeContext {
 public:
597
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
598
      : op_(op), ctx_(ctx) {}
599 600

  bool HasInput(const std::string& name) const override {
601
    // has only one input
X
Xin Pan 已提交
602
    const auto& ins = ctx_.inputs;
603 604
    auto it = ins.find(name);
    if (it == ins.end()) {
605 606
      return false;
    }
607
    const auto& in = it->second;
X
Xin Pan 已提交
608
    if (in.size() == 0) return false;
609 610 611 612
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
613
    return in[0] != nullptr;
614 615 616
  }

  bool HasOutput(const std::string& name) const override {
617
    // has only one output
X
Xin Pan 已提交
618
    const auto& outs = ctx_.outputs;
619 620
    auto it = outs.find(name);
    if (it == outs.end()) {
621 622
      return false;
    }
623
    const auto& out = it->second;
X
Xin Pan 已提交
624
    if (out.size() == 0) {
625 626
      return false;
    }
627 628 629 630
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
631
    return out[0] != nullptr;
632 633 634
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
635 636
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
637
    if (it == ins.end() || it->second.empty()) {
638 639
      return false;
    }
X
Xin Pan 已提交
640 641
    for (auto& input : it->second) {
      if (input == nullptr) {
642 643 644 645 646 647 648
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
649 650
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
651
    if (it == outs.end() || it->second.empty()) {
652 653
      return false;
    }
X
Xin Pan 已提交
654 655
    for (auto& output : it->second) {
      if (output == nullptr) {
656 657 658 659 660 661 662 663
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
664
  std::vector<std::string> Inputs(const std::string& name) const override {
665 666 667
    return op_.Inputs(name);
  }

H
hong 已提交
668
  std::vector<std::string> Outputs(const std::string& name) const override {
669 670 671
    return op_.Outputs(name);
  }

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

695 696
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
697 698
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
715 716 717

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
718

719 720 721 722 723
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
724 725 726 727 728 729 730 731 732 733 734 735

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
736
      PADDLE_THROW(platform::errors::Unimplemented(
737
          "Currently, the input type of ShareDim only can be LoDTensor "
738
          "or SelectedRows."));
739 740 741
    }
  }

H
hong 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
760
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
787 788
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
789 790
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
807 808

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
809
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
810
    Variable* out_var = out_it->second.at(j);
811 812 813 814
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
815
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
816 817
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
818

M
mozga-intel 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
838 839
  }

840
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
841
    PADDLE_THROW(platform::errors::PreconditionNotMet(
842
        "GetLoDLevel is only used in compile time. The calculation of "
843
        "output's actual lod is different among operators so that should be "
844
        "set in the runtime kernel."));
845 846
  }

847 848
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
849
    PADDLE_THROW(platform::errors::PreconditionNotMet(
850
        "SetLoDLevel is only used in compile time. The calculation of "
851
        "output's actual lod is different among operators so that should be "
852
        "set in the runtime kernel."));
C
chengduo 已提交
853 854
  }

855 856
  bool IsRuntime() const override { return true; }

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
876 877
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
878 879 880 881 882
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
883 884 885 886 887 888 889 890
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
891 892 893 894 895 896 897 898 899 900
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
901 902
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
903 904 905 906 907
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
908 909 910 911 912 913 914 915 916
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

917
 protected:
X
Xin Pan 已提交
918
  DDim GetDim(Variable* var) const {
919 920
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
921 922 923 924 925
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
926 927 928 929
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
930 931 932
    }
  }

X
Xin Pan 已提交
933 934 935 936 937 938 939 940
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
941
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
942 943
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
944 945
  }

X
Xin Pan 已提交
946
  void SetDim(Variable* var, const DDim& dim) {
947 948 949 950 951
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
952 953 954 955
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
956 957 958 959 960 961
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
962 963 964 965 966 967
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
968 969 970 971 972
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
973 974 975
    }
  }

F
fengjiayi 已提交
976 977
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
978 979
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
980 981
  }

X
Xin Pan 已提交
982 983 984 985 986 987 988 989 990 991 992
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
993 994 995
    return ToVarType(var->Type());
  }

996 997 998
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
999 1000 1001 1002
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1003 1004 1005 1006 1007
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1008 1009 1010 1011
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1012
    return it->second;
F
fengjiayi 已提交
1013 1014
  }

1015
  const OperatorBase& op_;
X
Xin Pan 已提交
1016
  const RuntimeContext& ctx_;
1017 1018
};

1019 1020
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1021 1022 1023 1024
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1025 1026
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1027 1028
    return;
  }
1029 1030 1031 1032 1033 1034 1035 1036
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1037 1038
}

1039 1040
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1041 1042
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1043
                     [data_type](OpKernelMap::const_reference kern_pair) {
1044 1045
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1046 1047
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1048 1049 1050
                     });
}

1051 1052
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1053 1054
  bool use_mkldnn_ctx =
      ctx.Attr<bool>("use_mkldnn") && platform::is_cpu_place(ctx.GetPlace());
1055
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1056 1057
}

B
baojun-nervana 已提交
1058
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1059 1060
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1061
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
1062 1063 1064
  this->InferShape(&infer_shape_ctx);
}

L
luotao1 已提交
1065 1066
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1067 1068
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1069 1070 1071
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1072
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1073
    all_kernels_must_compute_runtime_shape_ = true;
1074
  const Scope* cur_scope = &scope;
1075
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1076 1077
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1078
    pre_scope_ = cur_scope;
L
luotao1 已提交
1079
  } else {
1080 1081 1082 1083 1084 1085
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1086 1087 1088 1089 1090 1091 1092 1093
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1094
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1095
  auto* dev_ctx = pool.Get(place);
1096

1097
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
1098
    ChooseKernel(*runtime_ctx, scope, place);
1099 1100
  }

Y
yuyang18 已提交
1101 1102
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1103 1104
  Scope* transfer_scope = nullptr;
  {
1105
    platform::RecordEvent record_event("prepare_data",
1106
                                       platform::EventRole::kInnerOp);
1107 1108 1109 1110
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1111
  }
Y
yuyang18 已提交
1112 1113 1114 1115
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1116 1117
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1118
  }
Q
QI JUN 已提交
1119

1120
  if (!all_kernels_must_compute_runtime_shape_) {
1121
    platform::RecordEvent record_event("infer_shape",
1122
                                       platform::EventRole::kInnerOp);
1123
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1124 1125
    this->InferShape(&infer_shape_ctx);
  }
1126 1127 1128 1129 1130

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1131 1132
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1133
  {
1134
    platform::RecordEvent record_event("compute",
1135
                                       platform::EventRole::kInnerOp);
1136 1137
    (*kernel_func_)(
        ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
1138
  }
D
dzhwinter 已提交
1139

Y
yuyang18 已提交
1140
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1141
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1142
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1143
  }
1144 1145 1146 1147 1148 1149 1150

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1151 1152 1153 1154 1155 1156 1157 1158
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1159

D
dzhwinter 已提交
1160
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1161
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1162
    dev_ctx->Wait();
L
Leo Chen 已提交
1163 1164 1165
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
1166 1167 1168 1169
#endif
#if defined(PADDLE_WITH_HIP)
    PADDLE_ENFORCE_CUDA_SUCCESS(hipGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
L
Leo Chen 已提交
1170
#endif
D
dzhwinter 已提交
1171
  }
C
chengduoZH 已提交
1172 1173

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1174
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1175
  }
1176 1177 1178 1179 1180 1181 1182

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1183
}
X
Xin Pan 已提交
1184

L
Liu Yiqun 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1194 1195 1196 1197 1198
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));
L
Liu Yiqun 已提交
1199 1200 1201 1202

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
1203
      ExecutionContext(*this, scope, *dev_ctx, ctx));
1204 1205 1206
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
L
Liu Yiqun 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
#endif
#ifdef PADDLE_WITH_XPU
  if (kernel_iter == kernels.end() &&
      is_xpu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1251
#endif
1252 1253 1254 1255
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1256

1257 1258 1259 1260 1261
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1262 1263
}

Y
yuyang18 已提交
1264 1265 1266 1267
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1268
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1269
    auto* origin_var = scope.FindVar(var_name);
1270 1271 1272
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1273
    auto* original_tensor =
C
chengduo 已提交
1274
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1275
    auto* var = transfer_scope.FindVar(var_name);
1276 1277
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1278
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1279
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1280
    original_tensor->ShareDataWith(*transformed_tensor);
1281
    original_tensor->Resize(original_dims);
Y
yuyang18 已提交
1282 1283 1284
  }
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1352
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1353
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1354 1355
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1356
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1357

1358
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1359 1360 1361 1362
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1363 1364
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1365 1366 1367
    }
  }

Y
yuyang18 已提交
1368
  for (auto& var_name_item : Inputs()) {
1369 1370
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1371

X
Xin Pan 已提交
1372 1373 1374 1375
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1376
      auto* var = input_vars[i];
X
Xin Pan 已提交
1377

Y
yuyang18 已提交
1378
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1379
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1380 1381 1382
        continue;
      }

C
chengduo 已提交
1383
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1399 1400
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1433 1434
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1435

1436 1437 1438
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1439
      // We use a thread_local cache to fix that issue, the key in the cache is
1440 1441 1442 1443 1444
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1445 1446
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1447
      // variables, that behavior a lot different.
1448 1449 1450 1451 1452 1453 1454 1455 1456
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1457 1458
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1459
        enable_cache_transfer_scope_ = true;
1460
      }
1461
      if (!new_scope) {
Y
yuyang18 已提交
1462 1463
        new_scope = &scope.NewScope();
      }
1464 1465 1466 1467
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1468
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1469 1470
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1471
      if (enable_cache_runtime_context_) {
1472 1473
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1474 1475

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1476
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1477
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1495
      Tensor out;
Y
yuyang18 已提交
1496
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1497 1498 1499
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
  if (pre_scope_ == &scope && new_scope == nullptr) {
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1510 1511 1512

  return new_scope;
}
Q
Qiao Longfei 已提交
1513

1514 1515 1516
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
1517
  proto::VarType::Type default_data_type =
1518
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1519
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1530 1531 1532 1533 1534 1535 1536
      } else if (var->IsType<LoDTensorArray>()) {
        auto t_arr = var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr.size(); j++) {
          if (t_arr[j].IsInitialized()) {
            t = &(t_arr[j]);
          }
        }
1537 1538
      }
      if (t != nullptr) {
1539 1540 1541 1542 1543
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1544
                Type(), name, ctx.InputNames(name).at(i)));
1545
        proto::VarType::Type tmp = t->type();
1546
        PADDLE_ENFORCE(
1547
            tmp == *data_type || *data_type == default_data_type,
1548 1549 1550 1551 1552 1553
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1554 1555 1556 1557 1558 1559
        *data_type = tmp;
      }
    }
  }
}

1560
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1561
    const ExecutionContext& ctx) const {
1562 1563 1564
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1565 1566
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1567
  }
1568 1569 1570 1571
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1583 1584 1585 1586 1587
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1588
  return data_type;
Y
Yu Yang 已提交
1589
}
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1651 1652 1653 1654 1655 1656 1657 1658
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1659 1660
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1661 1662
}

Q
Qiao Longfei 已提交
1663
}  // namespace framework
L
liaogang 已提交
1664
}  // namespace paddle