operator.cc 60.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
18

19
#include <algorithm>
P
peizhilin 已提交
20 21
#include <sstream>
#include <string>
S
sneaxiy 已提交
22
#include <unordered_set>
P
peizhilin 已提交
23
#include <vector>
24

25
#include "gflags/gflags.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/data_transform.h"
27
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
28
#include "paddle/fluid/framework/details/nan_inf_utils.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/executor.h"
30
#include "paddle/fluid/framework/lod_tensor.h"
31
#include "paddle/fluid/framework/op_call_stack.h"
32
#include "paddle/fluid/framework/op_proto_maker.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/shape_inference.h"
34
#include "paddle/fluid/framework/transfer_scope_cache.h"
35
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/var_type.h"
L
Leo Chen 已提交
37
#include "paddle/fluid/platform/enforce.h"
38
#include "paddle/fluid/platform/profiler.h"
39 40 41
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif
Q
Qiao Longfei 已提交
42

43 44 45 46
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dzhwinter 已提交
47
DECLARE_bool(benchmark);
48
DECLARE_bool(check_nan_inf);
49
DECLARE_bool(enable_unused_var_check);
Q
Qiao Longfei 已提交
50
DEFINE_int32(inner_op_parallelism, 0, "number of threads for inner op");
P
pkpk 已提交
51 52 53
DEFINE_bool(fast_check_nan_inf, false,
            "Fast checking NAN/INF after each operation. It will be a little"
            "bit slow, much faster than check_nan_inf");
D
dzhwinter 已提交
54

Q
Qiao Longfei 已提交
55 56 57
namespace paddle {
namespace framework {

58 59 60 61 62 63
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
64

65 66
static DDim GetDimsDebug(const Scope& scope, const std::string& name,
                         bool get_actual_dim = false) {
67
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
68 69
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
70 71
  }

M
minqiyang 已提交
72 73 74 75 76 77 78 79 80
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
81 82 83 84 85
  } else {
    return DDim({-1});
  }
}

Q
Qiao Longfei 已提交
86 87 88 89 90 91
static bool VarInited(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

D
dzhwinter 已提交
92 93 94 95 96
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
97

M
minqiyang 已提交
98 99 100
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
101 102
      return "";
    }
Y
Yu Yang 已提交
103
    return DataTypeToString(tensor.type());
M
minqiyang 已提交
104
  } else if (var->IsType<SelectedRows>()) {
Q
Qiao Longfei 已提交
105 106 107 108
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
Y
Yu Yang 已提交
109
      return DataTypeToString(tensor.type());
Q
Qiao Longfei 已提交
110
    }
D
dzhwinter 已提交
111 112 113 114 115
  } else {
    return "";
  }
}

L
Leo Chen 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
static std::string GetPlace(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
  } else if (var->IsType<SelectedRows>()) {
    auto tensor = var->Get<SelectedRows>().value();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

145 146 147 148 149 150
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
151 152
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
153 154 155 156 157
  }

  return -1;
}

158
static LoD GetLoDDebug(const Scope& scope, const std::string& name) {
Q
Qiao Longfei 已提交
159 160 161 162 163 164 165
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
166 167 168
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
169 170 171 172 173
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
174 175 176 177 178
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
179
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
180 181 182 183 184 185
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
186
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
187 188 189 190 191 192
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

193
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
194 195 196
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
197
#ifndef PADDLE_WITH_CUDA
198 199 200 201
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
202
#else
203
      auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
P
peizhilin 已提交
204
      platform::SetDeviceId(dev_id);
205 206 207
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
208 209 210 211
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
212 213 214
#else
      auto dev_id = BOOST_GET_CONST(platform::XPUPlace, place).device;
      platform::SetXPUDeviceId(dev_id);
215
#endif
P
peizhilin 已提交
216
    }
P
peizhilin 已提交
217

218
    {
219 220 221 222 223 224
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
      platform::RecordEvent op_type_record_event(Type());
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
225
          op_name, platform::EventRole::kUniqueOp);
P
peizhilin 已提交
226 227
      RunImpl(scope, place);
    }
228

Z
Zhang Ting 已提交
229
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
230
  } catch (platform::EnforceNotMet& exception) {
231
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
232
    throw std::move(exception);
233 234 235 236 237 238
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
239
  } catch (...) {
240
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
241
    std::rethrow_exception(std::current_exception());
242
  }
243 244
}

245
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
246
  return inputs_.find(name) != inputs_.end();
247 248
}

249
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
250
  auto& ins = Inputs(name);
251 252
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
253
      platform::errors::InvalidArgument(
254 255
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
256
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
257 258
}

Y
Yu Yang 已提交
259 260
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
261
  auto it = inputs_.find(name);
262 263 264 265
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
266
  return it->second;
Y
Yan Chunwei 已提交
267 268
}

269
bool OperatorBase::HasOutputs(const std::string& name) const {
270
  if (outputs_.find(name) != outputs_.end()) {
271 272 273 274 275 276
    return true;
  } else {
    return false;
  }
}

277
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
278
  auto& outs = Outputs(name);
279 280 281 282 283
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
284
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
285 286
}

Y
Yu Yang 已提交
287 288
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
289
  auto it = outputs_.find(name);
290 291 292 293
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
294
  return it->second;
Y
Yan Chunwei 已提交
295 296
}

297
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
298
  std::stringstream ss;
Y
Yu Yang 已提交
299
  ss << "Op(" << type_ << "), inputs:{";
300

301
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
302 303
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
304 305
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
306 307
  }

Y
Yu Yang 已提交
308 309
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
310 311
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
312 313
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
314 315
      auto var_name = input.second[i];
      ss << var_name;
316
      if (scope) {
Q
Qiao Longfei 已提交
317 318 319 320 321 322 323
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
324 325 326
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
327
          ss << ":" << dtype;
328 329
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
330
          ss << "(" << GetPlace(*scope, var_name) << ")";
331
        }
332
      }
Y
Yu Yang 已提交
333 334 335
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
336
    }
Y
Yu Yang 已提交
337
    ss << "]";
Y
Yu Yang 已提交
338 339
    ++it;
    if (it != inputs_.end()) {
340 341
      ss << ", ";
    }
Q
Qiao Longfei 已提交
342
  }
Y
Yu Yang 已提交
343
  ss << "}, outputs:{";
Y
Yu Yang 已提交
344 345
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
346 347
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
348 349
      auto var_name = output.second[i];
      ss << var_name;
350
      if (scope) {
Q
Qiao Longfei 已提交
351 352 353 354 355 356 357
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
358 359
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
360 361
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
362
          ss << "(" << GetPlace(*scope, var_name) << ")";
363
        }
364
      }
Y
Yu Yang 已提交
365 366 367
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
368
    }
Y
Yu Yang 已提交
369
    ss << "]";
Y
Yu Yang 已提交
370 371
    ++it;
    if (it != outputs_.end()) {
372 373
      ss << ", ";
    }
Q
Qiao Longfei 已提交
374
  }
Y
Yu Yang 已提交
375
  ss << "}.";
Q
Qiao Longfei 已提交
376 377 378
  return ss.str();
}

Y
Yu Yang 已提交
379
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
380 381
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
382
                           const AttributeMap& attrs)
S
sneaxiy 已提交
383 384 385 386 387 388
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
389 390 391 392 393 394 395 396
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
397
}
398

Q
qijun 已提交
399 400
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
401
  for (auto& o : inputs_) {
Q
qijun 已提交
402 403 404 405 406 407
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
408 409 410 411 412 413 414 415 416 417
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
418
  auto& info = Info();
Y
Yu Yang 已提交
419 420

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
421
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
422 423 424 425 426 427 428 429 430
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
431 432
}

433
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
434
  if (info_ == nullptr || info_->proto_ == nullptr) return;
435

S
sneaxiy 已提交
436
  for (auto& in : info_->Proto().inputs()) {
437
    if (!in.dispensable()) {
438 439 440 441
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
442
    }
443 444
  }

S
sneaxiy 已提交
445
  for (auto& out : info_->Proto().outputs()) {
446
    if (!out.dispensable()) {
447 448 449 450
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
451
    }
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

B
baojun-nervana 已提交
468
static bool VarIsTensor(const Variable& var) {
C
chengduo 已提交
469
  return var.IsType<LoDTensor>() || var.IsType<SelectedRows>();
470 471
}

C
chengduo 已提交
472
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
473 474 475 476
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
  } else if (var.IsType<SelectedRows>()) {
    return &(var.Get<SelectedRows>().value());
Q
QI JUN 已提交
477
  } else {
478 479 480
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
481 482 483
  }
}

C
chengduo 已提交
484
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
485
  if (var->IsType<LoDTensor>()) {
486
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
487
  } else if (var->IsType<SelectedRows>()) {
488
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
489
  } else {
490 491 492
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
493 494 495
  }
}

496
bool ExecutionContext::HasInput(const std::string& name) const {
497
  auto* var = InputVar(name);
498 499 500 501
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
502
  auto* var = OutputVar(name);
503 504 505
  return var != nullptr;
}

X
Xin Pan 已提交
506
const Variable* ExecutionContext::InputVar(const std::string& name) const {
507 508
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
509 510 511
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

512 513
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
514
      platform::errors::InvalidArgument(
515 516
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
517 518 519
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
520
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
521 522 523
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

524 525 526 527 528
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
529 530 531
  return it->second.empty() ? nullptr : it->second[0];
}

532
template <>
533
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
C
chengduo 已提交
534
  return Input<LoDTensor>(name);
535 536 537
}

template <>
538
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
539
    const std::string& name) const {
540 541
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
542 543
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
544 545 546 547 548
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
549
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
550
                   if (var == nullptr) return nullptr;
551 552 553 554 555
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
556 557 558 559 560
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

561
template <>
562
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
C
chengduo 已提交
563
  return Output<LoDTensor>(name);
564 565 566
}

template <>
567
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
568
    const std::string& name) const {
H
hong 已提交
569 570 571
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
572 573
    return {};
  }
574
  std::vector<Tensor*> res;
575 576 577 578 579
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
580
                 });
581 582 583
  return res;
}

Y
Yu Yang 已提交
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

599 600
class RuntimeInferShapeContext : public InferShapeContext {
 public:
601
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
602
      : op_(op), ctx_(ctx) {}
603 604

  bool HasInput(const std::string& name) const override {
605
    // has only one input
X
Xin Pan 已提交
606
    const auto& ins = ctx_.inputs;
607 608
    auto it = ins.find(name);
    if (it == ins.end()) {
609 610
      return false;
    }
611
    const auto& in = it->second;
X
Xin Pan 已提交
612
    if (in.size() == 0) return false;
613 614 615 616
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
617
    return in[0] != nullptr;
618 619 620
  }

  bool HasOutput(const std::string& name) const override {
621
    // has only one output
X
Xin Pan 已提交
622
    const auto& outs = ctx_.outputs;
623 624
    auto it = outs.find(name);
    if (it == outs.end()) {
625 626
      return false;
    }
627
    const auto& out = it->second;
X
Xin Pan 已提交
628
    if (out.size() == 0) {
629 630
      return false;
    }
631 632 633 634
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
635
    return out[0] != nullptr;
636 637 638
  }

  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
639 640
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
641
    if (it == ins.end() || it->second.empty()) {
642 643
      return false;
    }
X
Xin Pan 已提交
644 645
    for (auto& input : it->second) {
      if (input == nullptr) {
646 647 648 649 650 651 652
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
653 654
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
655
    if (it == outs.end() || it->second.empty()) {
656 657
      return false;
    }
X
Xin Pan 已提交
658 659
    for (auto& output : it->second) {
      if (output == nullptr) {
660 661 662 663 664 665 666 667
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
668
  std::vector<std::string> Inputs(const std::string& name) const override {
669 670 671
    return op_.Inputs(name);
  }

H
hong 已提交
672
  std::vector<std::string> Outputs(const std::string& name) const override {
673 674 675
    return op_.Outputs(name);
  }

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

699 700
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
701 702
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
719 720 721

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
722

723 724 725 726 727
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
728 729 730 731 732 733 734 735 736 737 738 739

    if (in_var->IsType<framework::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<framework::SelectedRows>();
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
740
      PADDLE_THROW(platform::errors::Unimplemented(
741
          "Currently, the input type of ShareDim only can be LoDTensor "
742
          "or SelectedRows."));
743 744 745
    }
  }

H
hong 已提交
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
764
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
791 792
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
793 794
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
811 812

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
813
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
814
    Variable* out_var = out_it->second.at(j);
815 816 817 818
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
819
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
820 821
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
822

M
mozga-intel 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
842 843
  }

844
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
845
    PADDLE_THROW(platform::errors::PreconditionNotMet(
846
        "GetLoDLevel is only used in compile time. The calculation of "
847
        "output's actual lod is different among operators so that should be "
848
        "set in the runtime kernel."));
849 850
  }

851 852
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
853
    PADDLE_THROW(platform::errors::PreconditionNotMet(
854
        "SetLoDLevel is only used in compile time. The calculation of "
855
        "output's actual lod is different among operators so that should be "
856
        "set in the runtime kernel."));
C
chengduo 已提交
857 858
  }

859 860
  bool IsRuntime() const override { return true; }

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
      const std::string& name) override {
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
880 881
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
882 883 884 885 886
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
887 888 889 890 891 892 893 894
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
895 896 897 898 899 900 901 902 903 904
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
905 906
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
907 908 909 910 911
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
912 913 914 915 916 917 918 919 920
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

921
 protected:
X
Xin Pan 已提交
922
  DDim GetDim(Variable* var) const {
923 924
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
925 926 927 928 929
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
930 931 932 933
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
934 935 936
    }
  }

X
Xin Pan 已提交
937 938 939 940 941 942 943 944
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
945
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
946 947
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
948 949
  }

X
Xin Pan 已提交
950
  void SetDim(Variable* var, const DDim& dim) {
951 952 953 954 955
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
956 957 958 959
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
960 961 962 963 964 965
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
966 967 968 969 970 971
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
972 973 974 975 976
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
977 978 979
    }
  }

F
fengjiayi 已提交
980 981
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
982 983
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
984 985
  }

X
Xin Pan 已提交
986 987 988 989 990 991 992 993 994 995 996
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
997 998 999
    return ToVarType(var->Type());
  }

1000 1001 1002
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1003 1004 1005 1006
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1007 1008 1009 1010 1011
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1012 1013 1014 1015
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1016
    return it->second;
F
fengjiayi 已提交
1017 1018
  }

1019
  const OperatorBase& op_;
X
Xin Pan 已提交
1020
  const RuntimeContext& ctx_;
1021 1022
};

1023 1024
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1025 1026 1027 1028
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
Y
Yu Yang 已提交
1029 1030
  if (tensor.type() != proto::VarType::FP32 &&
      tensor.type() != proto::VarType::FP64) {
C
chengduoZH 已提交
1031 1032
    return;
  }
1033 1034 1035 1036 1037 1038 1039 1040
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1041 1042
}

1043 1044
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1045 1046
  auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1047
                     [data_type](OpKernelMap::const_reference kern_pair) {
1048 1049
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1050 1051
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1052 1053 1054
                     });
}

1055 1056
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1057 1058
  bool use_mkldnn_ctx =
      ctx.Attr<bool>("use_mkldnn") && platform::is_cpu_place(ctx.GetPlace());
1059
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1060 1061
}

B
baojun-nervana 已提交
1062
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1063 1064
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1065
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
B
baojun-nervana 已提交
1066 1067 1068
  this->InferShape(&infer_shape_ctx);
}

L
luotao1 已提交
1069 1070
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1071 1072
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1073 1074 1075
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1076
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1077
    all_kernels_must_compute_runtime_shape_ = true;
1078
  const Scope* cur_scope = &scope;
1079
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1080 1081
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1082
    pre_scope_ = cur_scope;
L
luotao1 已提交
1083
  } else {
1084 1085 1086 1087 1088 1089
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1090 1091 1092 1093 1094 1095 1096 1097
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1098
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1099
  auto* dev_ctx = pool.Get(place);
1100

1101
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
1102
    ChooseKernel(*runtime_ctx, scope, place);
1103 1104
  }

Y
yuyang18 已提交
1105 1106
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1107 1108
  Scope* transfer_scope = nullptr;
  {
1109
    platform::RecordEvent record_event("prepare_data",
1110
                                       platform::EventRole::kInnerOp);
1111 1112 1113 1114
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1115
  }
Y
yuyang18 已提交
1116 1117 1118 1119
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1120 1121
  if (!(kernel_type_->place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(kernel_type_->place_);
1122
  }
Q
QI JUN 已提交
1123

1124
  if (!all_kernels_must_compute_runtime_shape_) {
1125
    platform::RecordEvent record_event("infer_shape",
1126
                                       platform::EventRole::kInnerOp);
1127
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1128 1129
    this->InferShape(&infer_shape_ctx);
  }
1130 1131 1132 1133 1134

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1135 1136
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1137
  {
1138
    platform::RecordEvent record_event("compute",
1139
                                       platform::EventRole::kInnerOp);
1140 1141
    (*kernel_func_)(
        ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
1142
  }
D
dzhwinter 已提交
1143

Y
yuyang18 已提交
1144
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1145
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1146
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1147
  }
1148 1149 1150 1151 1152 1153 1154

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1155 1156 1157 1158 1159 1160 1161 1162
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1163

D
dzhwinter 已提交
1164
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1165
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1166
    dev_ctx->Wait();
L
Leo Chen 已提交
1167 1168 1169 1170
#if defined(PADDLE_WITH_CUDA)
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaGetLastError());
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
#endif
D
dzhwinter 已提交
1171
  }
C
chengduoZH 已提交
1172

P
pkpk 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
  if (FLAGS_fast_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
      // only check inserted vars,
      // please see executor.py for details of fast_check_nan_inf
      if (vname.rfind("debug_var") == 0) {
        VLOG(3) << "debugging nan/inf in var " << vname;

        auto* var = exec_scope.FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(type_, vname, var->Get<framework::LoDTensor>());
        } else if (var->IsType<framework::SelectedRows>()) {
          CheckTensorNANOrInf(type_, vname,
                              var->Get<framework::SelectedRows>().value());
        }
      }
    }
  }

C
chengduoZH 已提交
1192
  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1193
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1194
  }
1195 1196 1197 1198 1199 1200 1201

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1202
}
X
Xin Pan 已提交
1203

L
Liu Yiqun 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212
void OperatorWithKernel::ChooseKernel(const RuntimeContext& ctx,
                                      const Scope& scope,
                                      const platform::Place& place) const {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1213 1214 1215 1216 1217
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));
L
Liu Yiqun 已提交
1218 1219 1220 1221

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = this->GetExpectedKernelType(
1222
      ExecutionContext(*this, scope, *dev_ctx, ctx));
1223 1224 1225
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
      if (SupportGPU()) {
        expected_kernel_key.place_ = dev_ctx->GetPlace();
      } else {
        expected_kernel_key.place_ = platform::CPUPlace();
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
L
Liu Yiqun 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

  auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
#endif
#ifdef PADDLE_WITH_XPU
  if (kernel_iter == kernels.end() &&
      is_xpu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1270
#endif
1271 1272 1273 1274
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1275

1276 1277 1278 1279 1280
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1281 1282
}

Y
yuyang18 已提交
1283 1284 1285 1286
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1287
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1288
    auto* origin_var = scope.FindVar(var_name);
1289 1290 1291
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1292
    auto* original_tensor =
C
chengduo 已提交
1293
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1294
    auto* var = transfer_scope.FindVar(var_name);
1295 1296
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1297
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1298
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1299
    original_tensor->ShareDataWith(*transformed_tensor);
1300
    original_tensor->Resize(original_dims);
Y
yuyang18 已提交
1301 1302 1303
  }
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
      auto src_type = grad_tensor->type();
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
      auto dst_type = tensor->saved_type();
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1371
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1372
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1373 1374
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1375
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1376

1377
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1378 1379 1380 1381
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1382 1383
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1384 1385 1386
    }
  }

Y
yuyang18 已提交
1387
  for (auto& var_name_item : Inputs()) {
1388 1389
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1390

X
Xin Pan 已提交
1391 1392 1393 1394
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1395
      auto* var = input_vars[i];
X
Xin Pan 已提交
1396

Y
yuyang18 已提交
1397
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1398
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1399 1400 1401
        continue;
      }

C
chengduo 已提交
1402
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1418 1419
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1452 1453
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1454

1455 1456 1457
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1458
      // We use a thread_local cache to fix that issue, the key in the cache is
1459 1460 1461 1462 1463
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1464 1465
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1466
      // variables, that behavior a lot different.
1467 1468 1469 1470 1471 1472 1473 1474 1475
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1476 1477
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1478
        enable_cache_transfer_scope_ = true;
1479
      }
1480
      if (!new_scope) {
Y
yuyang18 已提交
1481 1482
        new_scope = &scope.NewScope();
      }
1483 1484 1485 1486
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1487
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1488 1489
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1490
      if (enable_cache_runtime_context_) {
1491 1492
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1493 1494

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1495
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1496
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1514
      Tensor out;
Y
yuyang18 已提交
1515
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1516 1517 1518
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
  if (pre_scope_ == &scope && new_scope == nullptr) {
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1529 1530 1531

  return new_scope;
}
Q
Qiao Longfei 已提交
1532

1533 1534 1535
void OperatorWithKernel::ParseInputDataType(
    const ExecutionContext& ctx, const std::string& name,
    proto::VarType::Type* data_type) const {
1536
  proto::VarType::Type default_data_type =
1537
      static_cast<proto::VarType::Type>(-1);
H
hong 已提交
1538
  const std::vector<Variable*> vars = ctx.MultiInputVar(name);
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
      } else if (var->IsType<SelectedRows>()) {
        t = &(var->Get<SelectedRows>().value());
1549 1550 1551 1552 1553 1554 1555
      } else if (var->IsType<LoDTensorArray>()) {
        auto t_arr = var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr.size(); j++) {
          if (t_arr[j].IsInitialized()) {
            t = &(t_arr[j]);
          }
        }
1556 1557
      }
      if (t != nullptr) {
1558 1559 1560 1561 1562
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
            platform::errors::InvalidArgument(
                "The Tensor in the %s Op's Input Variable %s(%s) is "
                "not initialized.",
H
hong 已提交
1563
                Type(), name, ctx.InputNames(name).at(i)));
1564
        proto::VarType::Type tmp = t->type();
1565
        PADDLE_ENFORCE(
1566
            tmp == *data_type || *data_type == default_data_type,
1567 1568 1569 1570 1571 1572
            platform::errors::InvalidArgument(
                "The DataType of %s Op's duplicable Variable %s must be "
                "consistent. The current variable type is (%s), but the "
                "previous variable type is (%s).",
                Type(), name, DataTypeToString(tmp),
                DataTypeToString(*data_type)));
1573 1574 1575 1576 1577 1578
        *data_type = tmp;
      }
    }
  }
}

1579
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
1580
    const ExecutionContext& ctx) const {
1581 1582 1583
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
1584 1585
  for (auto& input : ctx.InNameList()) {
    ParseInputDataType(ctx, input, &data_type);
Y
Yu Yang 已提交
1586
  }
1587 1588 1589 1590
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
  ParseInputDataType(ctx, name, &data_type);
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
1602 1603 1604 1605 1606
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
1607
  return data_type;
Y
Yu Yang 已提交
1608
}
1609

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
  auto type_a = tensor_a->type();
  auto type_b = tensor_b->type();

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

1670 1671 1672 1673 1674 1675 1676 1677
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
1678 1679
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
1680 1681
}

Q
Qiao Longfei 已提交
1682
}  // namespace framework
L
liaogang 已提交
1683
}  // namespace paddle